One-dimensional crystals for low-temperature thermoelectric cooling

May 24, 2017

Nagoya, Japan- Thermoelectric cooling is a solid-state refrigeration process where the heat in an electrically conductive material is transferred using the material's own conduction electrons without any need for the gaseous coolants, such as chlorofluorocarbons, that are used in conventional refrigeration. Coolers based on thermoelectric technology can be scaled down in size without changing their thermal-to-electrical energy conversion efficiency and this is a major advantage for localized cooling of tiny electronic devices. This effect is already used for temperature control in devices such as infrared sensors and laser diodes, and has also been used to provide low-temperature refrigeration for cryogenic electronic devices like superconducting sensors.

However, the lack of materials with suitable thermoelectric efficiency for practical cooling applications at temperatures below 250 K (approximately -23°C) has driven researchers at Nagoya University to look at the effectiveness of new compounds for truly low-temperature applications.

"We studied the thermoelectric properties of whisker-like crystals composed of a compound of tantalum, silicon and tellurium," says corresponding author Yoshihiko Okamoto from Nagoya University's Department of Applied Physics. "These crystals produced very high thermoelectric powers over a wide temperature range, from the cryogenic level of 50 K (which is around -223°C) up to room temperature, but still maintained the low electrical resistivity that is needed for practical cooling applications." The samples that were grown for the experiments included pure Ta4SiTe4 and other crystals that were chemically doped with low levels of molybdenum and antimony.

Various material properties were measured for the samples, including thermoelectric power, electrical resistivity, and thermal conductivity, to compare the effects of the two dopants on their thermoelectric characteristics. "We measured a very high thermoelectric power factor at an optimum temperature of 130 K," adds Okamoto. "However, this optimum temperature could be controlled over a very broad range by varying the chemical doping, and indicates that these crystals are suitable for practical low-temperature use."

Addition of as little as 0.1% molybdenum doping caused the resistivity of the telluride-type crystals to decrease dramatically at low temperatures, while they also demonstrated high thermoelectric powers that were closely related to the strongly one-dimensional electronic structures of the materials. The power factors of the crystals at room temperature greatly exceeded the corresponding values of the conventional Bi2Te3-based alloys that are commonly used in thermoelectric applications, and these crystals thus represent a highly promising route towards the development of high-performance thermoelectric cooling solutions at very low temperatures.

The article, "Large thermoelectric power factor at low temperatures in one-dimensional telluride Ta4SiTe4," was published in Applied Physics Letters at DOI: 10.1063/1.4982623.
-end-


Nagoya University

Related Thermal Conductivity Articles from Brightsurf:

Clemson researchers decode thermal conductivity with light
Clemson researchers examine a highly efficient thermoelectric material in a new way - by using light.

Collaboration sparks new model for ceramic conductivity
As insulators, metal oxides - also known as ceramics - may not seem like obvious candidates for electrical conductivity.

Topology-optimized thermal cloak-concentrator
Cloaking a concentrator in thermal conduction via topology optimization. A simultaneous cloaking and concentrating of heat flux is achieved through topology optimization, a computational structural design methodology.

Investigating a thermal challenge for MOFs
New research led by an interdisciplinary team across six universities examines heat transfer in MOFs and the role it plays when MOFs are used for storing fuel.

Thermal manipulation of plasmons in atomically thin films
Nanoscale photothermal effects can induce substantial changes in the optical response experienced by the probing light, thus suggesting their applications in all-optical light modulation.

Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.

Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.

Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.

Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.

Read More: Thermal Conductivity News and Thermal Conductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.