Moffitt researchers demonstrate mathematical modeling limits aggressive tumor cell growth

May 24, 2017

TAMPA, Fla. (May 24, 2017) - Cancers can be viewed as complex dynamic systems because they have many interacting parts that can change over time and space. Perhaps the most well-known complex dynamic system is the weather and, similar to weather forecasting, researchers in the Integrated Mathematical Oncology Department at the Moffitt Cancer Center are using mathematical methods to account for many variables in the search for new ways to understand and control cancer. Their recent study, which appears as the cover article in the May issue of Cancer Research, shows that mathematical models can be used to predict how different tumor cell populations interact with each other and respond to a changing environment. They found that, by using math models to understand the complex dynamics within cancers, they could use small changes in the environment to promote the growth of cells that are less aggressive and thereby decrease tumor growth.

A single tumor is composed of many different populations of cells. Using a combination of experimental and mathematical studies, the Moffitt researchers identified two different cell populations that co-exist in many different tumor types; an aggressive cell population that can invade the surrounding space and migrate to form metastases, and a non-invasive cell population that is prone to stay in one place and help produce blood vessels. They showed that in typical cancers growing in mice, the invasive cells are more numerous and have a survival advantage over non-invasive cells in a tumor.

But evolutionary principals dictate that the behaviors and actions of any organism (whether plants, animals or tumor cells) come with advantages and disadvantages. Even though the invasive cells have an advantage because of their ability to invade surrounding tissues, that invasive nature also has its drawbacks: increased susceptibility to changes in limited resources and their environment. The researchers used computer models to predict that small changes of the pH within the tumor could tip the balance, decreasing the survival advantage of the invasive cells in favor of the non-invasive cells.

Cell culture and mouse models of prostate cancer confirmed the mathematical model predictions. Researchers added sodium bicarbonate to the drinking water of mice to change the pH of their prostate tumors' environment. They found that non-invasive cells within the tumors developed a survival advantage over the invasive tumor cells. As a result, the mice had smaller tumors that were confined to the prostate - and fewer invasive metastatic tumors. Similar results were observed in a mouse model of breast cancer.

A well-recognized property of complex dynamic systems is the "butterfly effect," which proposes a butterfly flapping its wings in Japan could cause a tornado in Texas. This is often used to demonstrate that such systems, including cancer, are hopelessly complicated and cannot be controlled. Rather, the Moffitt investigators demonstrate the tendency of complex systems to magnify some small perturbation (i.e. the flapping butterfly wing) can actually be exploited. In fact, they show that, with sufficient understanding of the eco-evolutionary dynamics and input from mathematical models, cancers can be steered into a less invasive growth pattern with the application of small biological force.
-end-
The study was supported by funds received from the National Institutes of Health (U54CA193489, R01CA077575-15, and U01CA151924).

About Moffitt Cancer Center

Moffitt is dedicated to one lifesaving mission: to contribute to the prevention and cure of cancer. The Tampa-based facility is one of only 47 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt's excellence in research, clinical trials, prevention and cancer control. Moffitt is the No. 6 cancer hospital in the nation and has been listed in U.S. News & World Report as one of the "Best Hospitals" for cancer care since 1999. Moffitt devotes more than 2.5 million square feet to research and patient care. Moffitt's expert nursing staff is recognized by the American Nurses Credentialing Center with Magnet® status, its highest distinction. With more than 5,200 team members, Moffitt has an economic impact in the state of $2.1 billion. For more information, call 1-888-MOFFITT (1-888-663-3488), visit MOFFITT.org, and follow the momentum on Facebook, Twitter and YouTube.

H. Lee Moffitt Cancer Center & Research Institute

Related Tumor Cells Articles from Brightsurf:

A more sensitive way to detect circulating tumor cells
Breast cancer is the most frequently diagnosed cancer in women, and metastasis from the breast to other areas of the body is the leading cause of death in these patients.

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

How to prevent the spread of tumor cells via the lymph vessels
Scientists from the German Cancer Research Center and the Mannheim Medical Faculty of the University of Heidelberg identified a new way to block the dangerous spread of tumor cells via lymphatic vessels.

The CNIO reprograms CRISPR system in mice to eliminate tumor cells without affecting healthy cells
CNIO researchers destroyed Ewing's sarcoma and chronic myeloid leukaemia tumor cells by using CRISPR to cut out the fusion genes that cause them.

Feeding off fusion or the immortalization of tumor cells
Despite all recent progress, cancer remains one of the deadliest human diseases.

How do tumor cells divide in the crowd?
Scientists led by Dr. Elisabeth Fischer-Friedrich, group leader at the Excellence Cluster Physics of Life (PoL) and the Biotechnology Center TU Dresden (BIOTEC) studied how cancer cells are able to divide in a crowded tumor tissue and connected it to the hallmark of cancer progression and metastasis, the epithelial-mesenchymal transition (EMT).

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

New pathway to attack tumor cells identified
A study led by the Institut de Neurociències (INc-UAB) describes a new strategy to tackle cancer, based on inducing a potent stress in tumor causing cell destruction by autophagy.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Read More: Tumor Cells News and Tumor Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.