Scientists capture the first cryo-EM images of cellular target for type 2 diabetes in action

May 24, 2017

ANN ARBOR--Researchers at the University of Michigan, Stanford University and biotech company ConfometRx have captured the first cryo-electron microscopy snapshots of a key cellular receptor in action.

The findings, which were published online May 24 in the journal Nature, reveal new information about workings of G protein-coupled receptors--which are intermediaries for molecular messages related to nearly every function within the human body.

G protein-coupled receptors, often shorthanded as GPCRs, reside in the membrane of cells, where they detect signals from outside of the cell and convey them to the inside to be acted upon. They respond to signals including sensory input like light, taste and smell, as well as to hormones and neurotransmitters.

The new, near atomic-resolution images provide an incredibly detailed look at how these important receptors bind to and transmit signals from peptide hormones.

The team revealed how the hormone GLP-1 (Glucagon-like peptide-1) binds to its receptor on the outside of a cell, and how this causes changes to the arrangement of the part extending into the cell--which then engages and activates the G protein.

GLP-1 plays an important role in regulating insulin secretion, carbohydrate metabolism and appetite. It binds to the B family of G protein-coupled receptors, though information about their precise interactions have heretofore been limited by a lack of images of the complex in action.

"It's hard to overstate the importance of G protein-coupled receptors," said Georgios Skiniotis, a researcher at the U-M Life Sciences Institute and Medical School, and a senior author of the study. "GPCRs are targeted by about half of all drugs, and getting such structures by cryo-electron microscopy will be crucial for further drug discovery efforts. The GLP-1 receptor is an important drug target for Type 2 diabetes and obesity."

The size and fragility of GPCR complexes have made them notoriously difficult to capture using the longtime gold-standard of imaging: X-ray crystallography. It took Brian Kobilka, a professor of molecular and cellular physiology at Stanford University Medical School and a senior collaborator on the paper, many years to obtain the first one--which led to a Nobel Prize for Kobilka in 2012.

The current study was done using a cryo-electron microscopy, or cryo-EM. Cryo-EM is an evolving, cutting-edge imaging technology that involves freezing proteins in a thin layer of solution and then bouncing electrons off of them to reveal their shape. Because the frozen proteins are oriented every which way, computer software can later combine the thousands of individual snapshots into a 3-D picture at near-atomic resolution.

Advances in cryo-EM now make it possible to capture protein complexes with similar resolution to X-ray crystallography, without having to force the proteins into neat, orderly crystals--which limits the variety of arrangements and interactions that are possible.

"Using cryo-EM, we can also uncover more information about how GPCRs flex and move," said Yan Zhang, a postdoctoral researcher in Skiniotis' lab and a co-lead author of the paper. "And we can observe functional changes in complexes that are difficult, if not impossible, to crystallize."
The work was supported by grants from the National Institutes of Health.

The paper's authors are: Yan Zhang, Hongli Hu, Qianhui Qu, Jeffrey T. Tarrasch, and Georgios Skiniotis of U-M; Bingfa Sun, Dan Feng, Matthew Chu, Shane Li, and Tong Sun Kobilka of ConfometRx; and Brian K. Kobilka of ConfometRx and Stanford University.

University of Michigan

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to