Fukushima radioactive particle release was significant says new research

May 24, 2018

Scientists say there was a significant release of radioactive particles during the Fukushima-Daiichi nuclear accident.

The researchers identified the contamination using a new method and say if the particles are inhaled they could pose long-term health risks to humans.

The new method allows scientists to quickly count the number of caesium-rich micro-particles in Fukushima soils and quantify the amount of radioactivity associated with these particles.

The research, which was carried out by scientists from Kyushu University, Japan, and The University of Manchester, UK, was published in Environmental Science and Technology.

In the immediate aftermath of the Fukushima Daiichi nuclear accident, it was thought that only volatile, gaseous radionuclides, such as caesium and iodine, were released from the damaged reactors. However, in recent years it has become apparent that small radioactive particles, termed caesium-rich micro-particles, were also released.

Scientists have shown that these particles are mainly made of glass, and that they contain significant amounts of radioactive caesium, as well as smaller amounts of other radioisotopes, such as uranium and technetium.

The abundance of these micro-particles in Japanese soils and sediments, and their environmental impact is poorly understood. But the particles are very small and do not dissolve easily, meaning they could pose long-term health risks to humans if inhaled.

Therefore, scientists need to understand how many of the micro-particles are present in Fukushima soils and how much of the soil radioactivity can be attributed to the particles. Until recently, these measurements have proven challenging.

The new method makes use of a technique that is readily available in most Radiochemistry Laboratories called Autoradiography. In the method, an imaging plate is placed over contaminated soil samples covered with a plastic wrap, and the radioactive decay from the soil is recorded as an image on the plate. The image from plate is then read onto a computer.

The scientists say radioactive decay from the caesium-rich micro particles can be differentiated from other forms of caesium contamination in the soil.

The scientists tested the new method on rice paddy soil samples retrieved from different locations within the Fukushima prefecture. The samples were taken close to (4 km) and far away (40 km) from the damaged nuclear reactors. The new method found caesium-rich micro-particles in all of the samples and showed that the amount of caesium associated with the micro-particles in the soil was much larger than expected.

Dr Satoshi Utsunomiya, Associate Professor at Kyushu University, Japan, and the lead author of the study says "when we first started to find caesium-rich micro-particles in Fukushima soil samples, we thought they would turn out to be relatively rare. Now, using this method, we find there are lots of caesium-rich microparticles in exclusion zone soils and also in the soils collected from outside of the exclusion zone".

Dr Gareth Law, Senior Lecturer in Analytical Radiochemistry at the University of Manchester and an author on the paper, adds: "Our research indicates that significant amounts of caesium were released from the Fukushima Daiichi reactors in particle form.

"This particle form of caesium behaves differently to the other, more soluble forms of caesium in the environment. We now need to push forward and better understand if caesium micro-particles are abundant throughout not only the exclusion zone, but also elsewhere in the Fukushima prefecture; then we can start to gauge their impact".

The new method can be easily used by other research teams investigating the environmental impact of the Fukushima Daiichi accident.

Dr Utsunomiya adds: "we hope that our method will allow scientists to quickly measure the abundance of caesium-rich micro-particles at other locations and estimate the amount of caesium radioactivity associated with the particles. This information can then inform cost effective, safe management and clean-up of soils contaminated by the nuclear accident".
-end-
Notes to Editor

For media enquiries please contact Jordan Kenny on 0161 275 8257 or jordan.kenny@manchester.ac.uk

The paper, 'Novel Method of Quantifying Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi Nuclear Power Plant' has been published in the journal Environmental Science and Technology - DOI:10.1021/acs.est.7b06693

Energy is one of The University of Manchester's research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

About The University of Manchester

The University of Manchester, a member of the prestigious Russell Group, is the UK's largest single-site university with more than 40,000 students - including more than 10,000 from overseas.It is consistently ranked among the world's elite for graduate employability.

The University is also one of the country's major research institutions, rated fifth in the UK in terms of 'research power' (REF 2014). World-class research is carried out across a diverse range of fields including cancer, advanced materials, addressing global inequalities, energy and industrial biotechnology.

No fewer than 25 Nobel laureates have either worked or studied here.

It is the only UK university to have social responsibility among its core strategic objectives, with staff and students alike dedicated to making a positive difference in communities around the world.

Manchester is ranked 38th in the world in the Academic Ranking of World Universities 2017 and 6th in the UK.

Visit http://www.manchester.ac.uk for further information.

Facts and figures: http://www.manchester.ac.uk/discover/facts-figures/

Research Beacons: http://www.manchester.ac.uk/research/beacons/

News and media contacts: http://www.manchester.ac.uk/discover/news/

University of Manchester

Related Radioactivity Articles from Brightsurf:

Attacking tumors directly on identification
The combination of a biomolecule and a metal complex can target, bind, mark and damage cancer cells.

Can oilfield water safely be reused for irrigation in California?
Reusing low-saline oilfield water mixed with surface water to irrigate farms in the Cawelo Water District of California does not pose major health risks, as some opponents of the practice have feared, a study led by Duke University and RTI International researchers finds.

Cold War nuke tests changed rainfall
Historic records from weather stations show that rainfall patterns in Scotland were affected by charge in the atmosphere released by radiation from nuclear bomb tests carried out in the 1950s and '60s.

New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity
The material has been made using the technique of laser zone floating, which consists of fusion by means of the application of intense laser radiation and then rapid solidification.

Distribution of highly radioactive microparticles in Fukushima revealed
New method allows scientists to create a quantitative map of radioactive cesium-rich microparticle distribution in soils collected around the damaged Fukushima Daiichi Nuclear Power Plant Nuclear Power Plant (FDNPP).

Are doctors treating more thyroid cancer patients than necessary?
New research may help change treatment practices for patients diagnosed with low risk thyroid cancer.

New model suggests lost continents for early Earth
A new radioactivity model of Earth's ancient rocks calls into question current models for the formation of Earth's continental crust, suggesting continents may have risen out of the sea much earlier than previously thought but were destroyed, leaving little trace.

How slick water and black shale in fracking combine to produce radioactive waste
Study explains how radioactive radium transfers to wastewater in the widely-used method to extract oil and gas.

First reliable estimates of highly radioactive cesium-rich microparticles released by Fukushima disaster
Scientists have for the first time been able to estimate the amount of radioactive cesium-rich microparticles released by the disaster at the Fukushima power plant in 2011.

Artificial intelligence accurately predicts distribution of radioactive fallout
Researchers at the University of Tokyo Institute of Industrial Science created a machine-learning-based tool that can predict where radioactive emissions from nuclear power plants will disperse.

Read More: Radioactivity News and Radioactivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.