Nav: Home

Wood to supercapacitors

May 24, 2018

Carbon aerogels are ultralight, conductive materials, which are extensively investigated for applications in supercapacitor electrodes in electrical cars and cell phones. Chinese scientists have now found a way to make these electrodes sustainably. The aerogels can be obtained directly from cellulose nanofibrils, the abundant cell-wall material in wood, finds the study reported in the journal Angewandte Chemie.

Supercapacitors are capacitors that can take up and release a very large amount of energy in a very short time. Key requirements for supercapacitor electrodes are a large surface area and conductivity, combined with a simple production method. Another growing issue in supercapacitor production--mainly for smartphone and electric car technologies--is sustainability. However, sustainable and economical production of carbon aerogels as supercapacitor electrode materials is possible, propose Shu-Hong Yu and colleagues from the University of Science and Technology of China, Hefei, China.

Carbon aerogels are ultralight conductive materials with a very large surface area. They can be prepared by two production routes: the first and cheapest starts from mostly phenolic components and produces aerogels with improvable conductivity, while the second route is based on graphene- and carbon-nanotube precursors. The latter method delivers high-performance aerogels but is expensive and non-environmentally friendly. In their search for different precursors, Yu and colleagues have found an abundant, far less expensive, and sustainable source: wood pulp.

Well, not really wood pulp, but its major ingredient, nanocellulose. Plant cell walls are stabilized by fibrous nanocellulose, and this extractable material has very recently stimulated substantial research and technological development. It forms a highly porous, but very stable transparent network, and, with the help of a recent technique--oxidation with a radical scavenger called TEMPO--it forms a microporous hydrogel of highly oriented cellulose nanofibrils with a uniform width and length. As organic aerogels are produced from hydrogels by drying and pyrolysis, the authors attempted pyrolysis of supercritically or freeze-dried nanofibrillated cellulose hydrogel.

As it turns out, the method was not as straightforward as expected because ice crystal formation and insufficient dehydration hampered carbonization, according to the authors. Here, a trick helped. The scientists pyrolyzed the dried gel in the presence of the organic acid catalyst para-toluenesulfonic acid. The catalyst lowered the decomposition temperature and yielded a "mechanically stable and porous three-dimensional nanofibrous network" featuring a "large specific surface area and high electrical conductivity," the authors reported.

The authors also demonstrated that their wood-derived carbon aerogel worked well as a binder-free electrode for supercapacitor applications. The material displayed electrochemical properties comparable to commercial electrodes. The method is an interesting and innovative way in which to fabricate sustainable materials suitable for use in high-performance electronic devices.
-end-
About the Author

Dr. Shu-Hong Yu is a professor at the Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, University of Science and Technology of China, China. He is interested in bio-inspired synthesis of nanoscale building blocks, self-assembly and macroscopic assemblies, nanocomposites, and their functions and applications.

http://staff.ustc.edu.cn/~yulab/

Wiley

Related Carbon Articles:

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
How much carbon the land can stomach with more carbon dioxide in the air
Researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.
'Charismatic carbon'
According to the Intergovernmental Panel on Climate Change (IPCC), addressing carbon emissions from our food sector is absolutely essential to combatting climate change.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Can we still have fun if the UK goes carbon neutral?
Will Britain going carbon neutral mean no more fun? Experts from the University of Surrey have urged local policy makers to put in place infrastructure that will enable people to enjoy recreation and leisure while keeping their carbon footprint down.
Could there be life without carbon? (video)
One element is the backbone of all forms of life we've ever discovered on Earth: carbon.
Biodiversity and carbon: perfect together
Biodiversity conservation is often considered to be a co-benefit of protecting carbon sinks such as intact forests to help mitigate climate change.
Discovery of microbial activity in carbon sinking as a gatekeeper of Earth's deep carbon
Carbon is transported from Earth's surface to the mantle where the oceanic crust subducts beneath continents.
More Carbon News and Carbon Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.