Nav: Home

New research shows that mites and ticks are close relatives

May 24, 2019

Scientists from the University of Bristol and the Natural History Museum in London have reconstructed the evolutionary history of the chelicerates, the mega-diverse group of 110,000 arthropods that includes spiders, scorpions, mites and ticks.

They found, for the first time, genomic evidence that mites and ticks do not constitute two distantly related lineages, rather they are part of the same evolutionary line. This now makes them the most diverse group of chelicerates, changing our perspective on their biodiversity.

Arthropoda, or jointed-legged animals, make up the majority of animal biodiversity. They both pollinate (bees) and destroy our crops (locusts), are major food sources (shrimps and crabs), and are vectors of serious diseases like malaria and Lyme disease (mosquitoes and ticks).

Arthropods are ancient and fossils show that they have been around for more than 500 million years. The secret of their evolutionary success, which is reflected in their outstanding species diversity, is still unknown. To clarify what makes arthropod so successful we first need to understand how the different arthropod lineages relate to each other.

Co-author of the study, Professor Davide Pisani, from the University of Bristol's School of Earth Sciences and Biological Sciences, said: "Finding that mites and ticks constitute a single evolutionary lineage is really important for our understanding of how biodiversity is distributed within Chelicerata.

"Spiders, with more than 48,000 described species, have long been considered the most biodiverse chelicerate lineage, but 42,000 mite and 12,000 tick species have been described. So, if mites and ticks are a single evolutionary entity rather than two distantly related ones, they are more diverse than the spiders."

Dr Greg Edgecombe of the Natural History Museum London added: "Because of their anatomical similarities it has long been suspected that mites and ticks form a natural evolutionary group, which has been named Acari. However, not all anatomists agreed, and genomic data never found any support for this idea before."

Lead author, Dr Jesus Lozano Fernandez, from Bristol's School of Biological Sciences, said: "Spiders are iconic terrestrial animals that have always been part of the human imagination and folklore, representing mythological and cultural symbols, as well as often being objects of inner fears or admiration.

"Spiders have long been considered the most biodiverse chelicerate lineage, but our findings show that Acari is, in fact, bigger."

In order to come up with their findings, the researchers used an almost even representation of mites and ticks (10 and 11 species, respectively), the most complete species-level sampling at the genomic level for these groups so far.

Dr Lozano-Fernandez added: "Regardless of the methods we used, our results converge on the same answer - mites and ticks really do form a natural group. Evolutionary trees like the one we've reconstructed provide us with the background information we need to interpret processes of genomic change.

"Our genealogical tree can now be used as the foundation for studies using comparative genomics to address problems of potential biomedical and agricultural relevance, like the identification of the genomic changes that underpinned the evolution of blood-feeding parasitic ticks from ancestors that weren't blood-feeders."
-end-


University of Bristol

Related Biodiversity Articles:

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.
Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.
Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.
Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.
Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Mapping global biodiversity change
A new study, published in Science, which focuses on mapping biodiversity change in marine and land ecosystems shows that loss of biodiversity is most prevalent in the tropic, with changes in marine ecosystems outpacing those on land.
What if we paid countries to protect biodiversity?
Researchers from Sweden, Germany, Brazil and the USA have developed a financial mechanism to support the protection of the world's natural heritage.
Grassland biodiversity is blowing in the wind
Temperate grasslands are the most endangered but least protected ecosystems on Earth.
The loss of biodiversity comes at a price
A University of Cordoba research team ran the numbers on the impact of forest fires on emblematic species using the fires in Spain's Doñana National Park and Segura mountains in 2017 as examples
More Biodiversity News and Biodiversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.