Quantum computing boost from vapour stabilising technique

May 24, 2019

A technique to stabilise alkali metal vapour density using gold nanoparticles, so electrons can be accessed for applications including quantum computing, atom cooling and precision measurements, has been patented by scientists at the University of Bath.

Alkali metal vapours, including lithium, sodium, potassium, rubidium and caesium, allow scientists to access individual electrons, due to the presence of a single electron in the outer 'shell' of alkali metals.

This has great potential for a range of applications, including logic operations, storage and sensing in quantum computing, as well as in ultra-precise time measurements with atomic clocks, or in medical diagnostics including cardiograms and encephalograms.

However, a serious technical obstacle has been reliably controlling the pressure of the vapour within an enclosed space, for instance the tube of an optical fibre. The vapour needs to be prevented from sticking to the sides in order to retain its quantum properties, but existing methods to do this, including directly heating vapour containers are slow, costly, and impractical at scale.

Scientists from the University of Bath, working with a colleague at the Bulgarian Academy of Sciences, have devised an ingenious method of controlling the vapour by coating the interior of containers with nanoscopic gold particles 300,000 times smaller than a pinhead.

When illuminated with green laser light the nanoparticles rapidly absorb and convert the light into heat, warming the vapour and causing it to disperse into the container more than 1,000 times quicker than with other methods. The process is highly reproducible and, in addition, the new nanoparticle coating was found to preserve the quantum states of alkali metal atoms that bounce from it.

The study is published in Nature Communications.

Professor Ventsislav Valev, from the University of Bath's Department of Physics led the research. He said: "We are very excited by this discovery because it has so many applications in current and future technologies! It would be useful in atomic cooling, in atomic clocks, in magnetometry and in ultra-high-resolution spectroscopy."

"Our coating allows fast and reproducible external control of the vapour density and related optical depth, crucial for quantum optics in these confined geometries."

Assoc. Prof Dimitar Slavov, from the Institute of Electronics in the Bulgarian Academy of Sciences, added "In this proof of principle, it was demonstrated that illuminating our coating significantly outperforms conventional methods and is compatible with standard polymer coatings used to preserve quantum states of single atoms and coherent ensembles."

Dr Kristina Rusimova, a prize fellow in the Department of Physics, added: "Further improvements of our coating are possible by tuning particle size, material composition and polymer environment. The coating can find applications in various containers, including optical cells, magneto-optical traps, micro cells, capillaries and hollow-core optical fibres."
-end-
The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) UK Quantum Technology Hub "Networked Quantum Information Technologies" and the Royal Society.

For further information, please contact Chris Melvin in the University of Bath Press Office on +44 (0)1225 383 941 or c.m.melvin@bath.ac.uk

Notes

University of Bath

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 6th in the UK by The Guardian University Guide 2019, 5th for graduate employment in The Times & Sunday Times Good University Guide 2019, and 9th out of 131 UK universities in the Complete University Guide 2020.

University of Bath

Related Quantum Computing Articles from Brightsurf:

Bringing a power tool from math into quantum computing
The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing
A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing
Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing
Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing
Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.