Nav: Home

Quantum computing boost from vapour stabilising technique

May 24, 2019

A technique to stabilise alkali metal vapour density using gold nanoparticles, so electrons can be accessed for applications including quantum computing, atom cooling and precision measurements, has been patented by scientists at the University of Bath.

Alkali metal vapours, including lithium, sodium, potassium, rubidium and caesium, allow scientists to access individual electrons, due to the presence of a single electron in the outer 'shell' of alkali metals.

This has great potential for a range of applications, including logic operations, storage and sensing in quantum computing, as well as in ultra-precise time measurements with atomic clocks, or in medical diagnostics including cardiograms and encephalograms.

However, a serious technical obstacle has been reliably controlling the pressure of the vapour within an enclosed space, for instance the tube of an optical fibre. The vapour needs to be prevented from sticking to the sides in order to retain its quantum properties, but existing methods to do this, including directly heating vapour containers are slow, costly, and impractical at scale.

Scientists from the University of Bath, working with a colleague at the Bulgarian Academy of Sciences, have devised an ingenious method of controlling the vapour by coating the interior of containers with nanoscopic gold particles 300,000 times smaller than a pinhead.

When illuminated with green laser light the nanoparticles rapidly absorb and convert the light into heat, warming the vapour and causing it to disperse into the container more than 1,000 times quicker than with other methods. The process is highly reproducible and, in addition, the new nanoparticle coating was found to preserve the quantum states of alkali metal atoms that bounce from it.

The study is published in Nature Communications.

Professor Ventsislav Valev, from the University of Bath's Department of Physics led the research. He said: "We are very excited by this discovery because it has so many applications in current and future technologies! It would be useful in atomic cooling, in atomic clocks, in magnetometry and in ultra-high-resolution spectroscopy."

"Our coating allows fast and reproducible external control of the vapour density and related optical depth, crucial for quantum optics in these confined geometries."

Assoc. Prof Dimitar Slavov, from the Institute of Electronics in the Bulgarian Academy of Sciences, added "In this proof of principle, it was demonstrated that illuminating our coating significantly outperforms conventional methods and is compatible with standard polymer coatings used to preserve quantum states of single atoms and coherent ensembles."

Dr Kristina Rusimova, a prize fellow in the Department of Physics, added: "Further improvements of our coating are possible by tuning particle size, material composition and polymer environment. The coating can find applications in various containers, including optical cells, magneto-optical traps, micro cells, capillaries and hollow-core optical fibres."
-end-
The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) UK Quantum Technology Hub "Networked Quantum Information Technologies" and the Royal Society.

For further information, please contact Chris Melvin in the University of Bath Press Office on +44 (0)1225 383 941 or c.m.melvin@bath.ac.uk

Notes

University of Bath

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 6th in the UK by The Guardian University Guide 2019, 5th for graduate employment in The Times & Sunday Times Good University Guide 2019, and 9th out of 131 UK universities in the Complete University Guide 2020.

University of Bath

Related Quantum Computing Articles:

Quantum experiments explore power of light for communications, computing
A team of quantum researchers from ORNL have conducted a series of experiments to gain a better understanding of quantum mechanics and pursue advances in quantum networking and quantum computing, which could lead to practical applications in cybersecurity and other areas.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
A platform for stable quantum computing, a playground for exotic physics
Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties, which not only paves the way for more stable quantum computing but also an entirely new platform to explore the wild world of exotic physics.
Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
New material shows high potential for quantum computing
A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.
More Quantum Computing News and Quantum Computing Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.