Nav: Home

New algorithm uses disease history to predict intensive care patients' chances of survival

May 24, 2019

Researchers from the University of Copenhagen and Rigshospitalet have used data on more than 230,000 intensive care patients to develop a new algorithm. Among other things, it uses disease history from the past 23 years to predict patients' chances of survival in intensive care units.

Every year, tens of thousands of patients are admitted to intensive care units throughout Denmark. Determining which treatment is best for the individual patient is a great challenge. To make this decision, doctors and nurses use various methods to try to predict the patient's chances of survival and mortality. However, the existing methods can be significantly improved.

Therefore, researchers from the Faculty of Health and Medical Sciences at the University of Copenhagen and Rigshospitalet have developed a new algorithm which much more accurately predicts an intensive care patient's chances of surviving. Their research has been published in the scientific journal Lancet Digital Health.

'We have used Danish health data in a new way, using an algorithm to analyse file data from the individual patient's disease history. The Danish National Patient Registry contains data on the disease history of millions of Danes, and in principle the algorithm is able to draw on the history of the individual citizen of benefit to the individual patient in connection with treatment,' says Professor Søren Brunak from the Novo Nordisk Foundation Center for Protein Research.

Analysing 23 Years of Disease History

Developing the algorithm, the researchers used data on more than 230,000 patients admitted to intensive care units in Denmark in the period 2004-2016. In the study the algorithm analysed the individual patient's disease history, covering as much as 23 years.

At the same time, they included in their calculations measurements and tests made during the first 24 hours of the admission in question. The result was a significantly more accurate prediction of the patient's mortality risk than offered by existing methods.

'Excessive treatment is a serious risk among terminally ill patients treated in Danish intensive care units. Doctors and nurses have lacked a support tool capable of instructing them on who will benefit from intensive care. With these results we have come a significant step closer to testing such tools and directly improving treatment of the sickest patients,' says Professor Anders Perner from the Department of Clinical Medicine and the Department of Intensive Care, Rigshospitalet.

Significant with Regard to Death and Survival

The algorithm made three predictions: the risk of the patient dying in hospital (which could be any number of days following admission), within 30 days of admission and within 90 days of admission.

For example, the researchers could tell that up to 10-year-old diagnoses affected predictions, and that young age lowered the risk of dying, even when other values were critical, while old age increased mortality risk. The algorithm is not just a useful tool in everyday practice in intensive care units throughout the country. It can also tell us which factors are significant when it comes to a person's death or survival.

'We "train" the algorithm to remember which previous diagnoses have had the greatest effect on the patient's chances of survival. No matter whether they are one, five or 10 years old. This is possible when we also have data from the actual admission, such as heart rate or answers to blood tests. By analysing the method, we are able to understand the importance it attaches to the various parameters with regard to death and survival,' says Søren Brunak.

The researchers behind the study hope to be able to use the algorithm in clinical tests within a couple of years. At the same time, the next step is to try to further develop the algorithm, making it capable of making predictions by the hour.
-end-


University of Copenhagen The Faculty of Health and Medical Sciences

Related Algorithm Articles:

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.
New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.
New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
Algorithm turns cancer gene discovery on its head
Prediction method could help personalize cancer treatments and reveal new drug targets.
New algorithm predicts gestational diabetes
Timely prediction may help prevent the condition using nutritional and lifestyle changes.
New algorithm could mean more efficient, accurate equipment for Army
Researchers working on an Army-funded project have developed an algorithm to simulate how electromagnetic waves interact with materials in devices to create equipment more efficiently and accurately.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.