Nav: Home

Hubble spies curious galaxy moving a little closer

May 24, 2019

This Hubble image stars Messier 90, a beautiful spiral galaxy located roughly 60 million light-years from the Milky Way in the constellation of Virgo (the Virgin). The galaxy is part of the Virgo Cluster, a gathering of galaxies that is over 1,200 strong.

This image combines infrared, ultraviolet and visible light gathered by the Wide Field and Planetary Camera 2 on the NASA/ESA Hubble Space Telescope. This camera was operational between 1994 and 2010, producing images with an unusual staircase-like shape as seen here. This is because the camera was made up of four light detectors with overlapping fields of view, one of which gave a higher magnification than the other three. When the four images are combined together in one picture, the high-magnification image needs to be reduced in size in order for the image to align properly. This produces an image with a layout that looks like steps.

Messier 90 is remarkable; it is one of the few galaxies seen to be traveling toward the Milky Way, not away from it. The galaxy's light reveals this incoming motion in a phenomenon known as blueshift. In simple terms, the galaxy is compressing the wavelength of its light as it moves towards us, like a slinky being squashed when you push on one end. This increases the frequency of the light and shifts it towards the blue end of the spectrum. As our universe is expanding, almost all of the galaxies we see in the universe are moving away from us, and we therefore see their light more towards the red end of the spectrum, known as redshift. Messier 90, however, appears to be a rare exception.

Astronomers think that this blueshift is likely caused by the cluster's colossal mass accelerating its members to high velocities on bizarre and peculiar orbits, sending them whirling around on odd paths that take them both towards and away from us over time. While the cluster itself is moving away from us, some of its constituent galaxies, such as Messier 90, are moving faster than the cluster as a whole, making it so that, from Earth, we see the galaxy heading towards us. However, some are also moving in the opposite direction within the cluster, and thus seem to be streaking away from us at very high velocity.
-end-
Messier 90 is featured in Hubble's Messier catalog, which includes some of the most fascinating objects that can be observed from Earth's Northern Hemisphere. See the NASA-processed image and other Messier objects at: https://www.nasa.gov/content/goddard/hubble-s-messier-catalog.

NASA/Goddard Space Flight Center

Related Universe Articles:

This is how a 'fuzzy' universe may have looked
Scientists at MIT, Princeton University, and Cambridge University have found that the early universe, and the very first galaxies, would have looked very different depending on the nature of dark matter.
And then there was light: looking for the first stars in the Universe
Astronomers are closing in on a signal that has been travelling across the Universe for 12 billion years, bringing them nearer to understanding the life and death of the very earliest stars.
AI learns to model our Universe
An international team has used AI to create a 3D simulation of the Universe.
New voyage to the universe from DESHIMA
Researchers in Japan and the Netherlands jointly developed an originative radio receiver DESHIMA (Deep Spectroscopic High-redshift Mapper) and successfully obtained the first spectra and images with it.
A peek at the birth of the universe
The Square Kilometre Array (SKA) is set to become the largest radio telescope on Earth.
Exactly how fast is the universe expanding?
The collision of two neutron stars (GW170817) flung out an extraordinary fireball of material and energy that is allowing a Princeton-led team of astrophysicists to calculate a more precise value for the Hubble constant, the speed of the universe's expansion.
How heavy elements come about in the universe
Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons).
The 'stuff' of the universe keeps changing
The composition of the universe--the elements that are the building blocks for every bit of matter -- is ever-changing and ever-evolving, thanks to the lives and deaths of stars.
A universe aglow
Deep observations made with the MUSE spectrograph on ESO's Very Large Telescope have uncovered vast cosmic reservoirs of atomic hydrogen surrounding distant galaxies.
Possible death of the Universe scenario proposed
Some catastrophic scenarios may include the Big Rip during which matter of the Universe and the spacetime are progressively torn apart through the expansion.
More Universe News and Universe Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.