Cancer cells are quick-change artists adapting to their environment

May 24, 2019

Until now, researchers have assumed that the growth of solid tumors originates from cancer stem cells characterized by specific surface markers, which develop in a fixed, hierarchical order. Accordingly, such cancer stem cells are responsible for tumor progression and produce specific types of more differentiated cancer cells whose fates are predetermined. In a joint interdisciplinary project led by the Luxembourg Institute of Health (LIH), researchers now show that cancer cells of glioblastomas - conspicuously aggressive solid brain tumors - manifest developmental plasticity and their phenotypic characteristics are less constrained than believed. Cancer stem cells, including their progeny, are able to adapt to environmental conditions and undergo reversible transformations into various cell types, thereby altering their surface structures. The results imply that novel therapeutic approaches, which target specific surface structures of cancer stem cells, will be of limited utility. The research team has published its findings in Nature Communications in April 2019.

Glioblastomas are the most common malignant brain tumors. Because of their rapid growth, the prognosis for those affected is usually dismal. Many patients hold out hopes for novel therapeutic approaches, which utilize drug-bound antibodies directed against specific markers present on the surface of a subpopulation of immature glioblastoma cells. These antibody-drug conjugates bind to the surface, are then internalized and kill the cancer stem cells.

Remarkable cell state transitions

However, results now published in the journal Nature Communications suggest that this approach may be misdirected: 'We exposed cancer cells in the laboratory to certain stressors, such as drug treatment or oxygen deficiency', explains Dr. Anna Golebiewska, Junior Principal Investigator at the NORLUX Neuro-Oncology Laboratory in LIH's Department of Oncology and co-first author of the study. 'We were able to show that glioblastoma cells react flexibly to such stress factors and simply transform themselves at any time into cell types with a different set of surface markers.' This plasticity allows the cells to adapt to their microenvironment and reach a favorable environment-specific heterogeneity that enables them to sustain and grow, and mostly likely to escape also therapeutic attacks.

The team of scientists from Luxembourg, Norway and Germany, led by Prof. Simone P. Niclou at LIH, proposes that neoplastic cells of other tumor types may be also less constrained by defined hierarchical principles, but rather can adapt their characteristics to the prevailing environmental conditions. 'The same phenomenon has been observed in breast and skin cancer', says Dr. Golebiewska. 'This observation predicts that cancer therapies specifically directed against cancer stem cell markers may not be successful in patients.'

The new findings could help to optimize future standard treatments. In laboratory experiments, the researchers were able to show that environmental factors, such as lack of oxygen in combination with signals from the tumor microenvironment can induce cancer cells to modify their characteristics. This microenvironment, the immediate surrounding of the cancer, comprises cells and molecules that influence the growth of the tumor. 'Once we understand exactly what causes the plasticity of tumor cells, we can devise combination therapies which target the signals underlying plasticity and thereby improve the therapeutic impact', underlines Dr. Golebiewska.

Collaboration and funding

The study is a collaborative work between the NORLUX Neuro-Oncology Laboratory and other research units and platforms at LIH. The researchers from LIH also worked in close collaboration with their long-term national partners to whom they are tightly connected through transversal research programmes: the Luxembourg Centre for Systems Biomedicine at the University of Luxembourg and the Department of Neurosurgery of the Centre Hospitalier de Luxembourg. Moreover, the project was carried out with international partners from the Technische Universität Dresden, Germany, the University of Heidelberg, Germany, and the University of Bergen, Norway. This joint undertaking of different research and clinical players gives a truly interdisciplinary dimension to the study.
-end-
The study is a major part of the PhD thesis of Dr Anne Dirkse, co-first author on the publication, who was supported by an AFR PhD grant (#5778172 - PhD2013-1/BM) from the Luxembourg National Research Fund (FNR) and a training grant from the Fondation du Pélican de Mie et Pierre Hippert-Faber (Fondation de Luxembourg). Furthermore, the work was supported by funding from LIH, Sächsisches Staatsministerium für Wissenschaft und Kunst (SMWK), Deutsche Krebshilfe and Deutsche Forschungsgemeinschaft (DFG).

Luxembourg Institute of Health

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.