Nav: Home

Adding a carbon atom transforms 2D semiconducting material

May 24, 2019

A technique that introduces carbon-hydrogen molecules into a single atomic layer of the semiconducting material tungsten disulfide dramatically changes the electronic properties of the material, according to Penn State researchers at Penn State who say they can create new types of components for energy-efficient photoelectric devices and electronic circuits with this material.

"We have successfully introduced the carbon species into the monolayer of the semiconducting material," said Fu Zhang, doctoral student in materials science and engineering lead author of a paper published online today (May26) in Science Advances.

Prior to doping - adding carbon - the semiconductor, a transition metal dichalcogenide (TMD), was n-type -- electron conducting. After substituting carbon atoms for sulfur atoms, the one-atom-thick material developed a bipolar effect, a p-type -- hole -- branch, and an n-type branch. This resulted in an ambipolar semiconductor.

"The fact that you can change the properties dramatically by adding as little as two atomic percent was something unexpected," Mauricio Terrones, senior author and distinguished professor of physics, chemistry and materials science and engineering.

According to Zhang, once the material is highly doped with carbon, the researchers can produce a degenerate p-type with a very high carrier mobility. "We can build n+/p/n+ and p+/n/p+ junctions with properties that have not been seen with this type of semiconductor," he said.

In terms of applications, semiconductors are used in various devices in industry. In this case, most of those devices will be transistors of different sorts. There are around 100 trillion transistors in a laptop.

"This type of material might also be good for electrochemical catalysis," Terrones said. "You could improve conductivity of the semiconductor and have catalytic activity at the same time."

There are few papers in the field of 2D materials doping, because it requires multiple processes to take place simultaneously under specific types of conditions. The team's technique uses a plasma to lower the temperature at which methane can be cracked - split apart - down to 752 degrees Fahrenheit. At the same time, the plasma has to be strong enough to knock a sulfur atom out of the atomic layer and substitute a carbon-hydrogen unit.

"It's not easy to dope monolayers, and then to measure carrier transport is not trivial," Terrones says. "There is a sweet spot where we are working. Many other things are required."

Susan Sinnott, professor and head of the Department of Materials Science and Engineering, provided theoretical calculations that guided the experimental work. When Terrones and Zhang observed that doping the 2D material was changing its optical and electronic properties - something they had never seen before - Sinnott's team predicted the best atom to dope with and predicted the properties, which corresponded with the experiment.

Saptarshi Das, assistant professor of engineering science and mechanics, and his group, then measured the carrier transport in various transistors with increasing amounts of carbon substitution. They watched the conductance change radically until they had completely changed the conduction type from negative to positive.

"It was very much a multidisciplinary work," Terrones says.
-end-
Additional authors on the Science Advances paper, titled "Carbon doping of WS2 monolayers: Bandgap reduction and p-type doping transport," include current or former doctoral students Yanfu Lu, Daniel Schulman, Tianyi Zhang, Zhong Lin and Yu Lei; and Ana Laura Ellias and Kazunori Fujisawa, assistant research professors of physics.

The Basic Energy Sciences program in the Department of Energy's Office of Science supported this work.

Penn State

Related Semiconductor Articles:

Ultrafast tunable semiconductor metamaterial created
An international team of researchers has devised an ultrafast tunable metamaterial based on gallium arsenide nanoparticles, as published by Nature Communications.
Graphene 'copy machine' may produce cheap semiconductor wafers
A new technique developed by MIT engineers may vastly reduce the overall cost of wafer technology and enable devices made from more exotic, higher-performing semiconductor materials than conventional silicon.
Method improves semiconductor fiber optics, paves way for developing devices
A new method to improve semiconductor fiber optics may lead to a material structure that might one day revolutionize the global transmission of data, according to an interdisciplinary team of researchers.
Scientists discover new 'boat' form of promising semiconductor GeSe
Princeton researchers have discovered a new form of the simple compound GeSe that has surprisingly escaped detection until now.
UNIST engineers oxide semiconductor just single atom thick
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology, has introduced a new technique that efficiently isolates circulating tumor cells from whole blood at a liquid-liquid interface.
Semiconductor-free microelectronics are now possible, thanks to metamaterials
Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device.
Notre Dame researchers find transition point in semiconductor nanomaterials
Collaborative research at Notre Dame has demonstrated that electronic interactions play a significant role in the dimensional crossover of semiconductor nanomaterials.
Graphene key to growing 2-dimensional semiconductor with extraordinary properties
A newly discovered method for making two-dimensional materials could lead to new and extraordinary properties, particularly in a class of materials called nitrides, say the Penn State materials scientists who discovered the process.
UA organic semiconductor research could boost electronics
A team of UA researchers in engineering and chemistry has received $590,000 from the National Science Foundation to enhance the effectiveness of organic semiconductors for making ultrathin and flexible optoelectronics like OLED displays for TVs and mobile phones.
NREL theory establishes a path to high-performance 2-D semiconductor devices
Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have uncovered a way to overcome a principal obstacle in using two-dimensional (2-D) semiconductors in electronic and optoelectronic devices.

Related Semiconductor Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...