High-speed method to aid search for solar energy storage catalysts

May 25, 2012

MADISON -- Eons ago, nature solved the problem of converting solar energy to fuels by inventing the process of photosynthesis.

Plants convert sunlight to chemical energy in the form of biomass, while releasing oxygen as an environmentally benign byproduct. Devising a similar process by which solar energy could be captured and stored for use in vehicles or at night is a major focus of modern solar energy research.

"It is widely recognized that solar energy is the most abundant source of energy on the planet," explains University of Wisconsin-Madison chemistry professor Shannon Stahl. "Although solar panels can convert sunlight to electricity, the sun isn't always shining."

Thus, finding an efficient way to store solar energy is a major goal for science and society. Efforts today are focused on electrolysis reactions that use sunlight to convert water, carbon dioxide, or other abundant feedstocks into chemicals that can be stored for use any time.

A key stumbling block, however, is finding inexpensive and readily available electrocatalysts that facilitate these solar-driven reactions. Now, that quest for catalysts may become much easier thanks to research led by Stahl and UW-Madison staff scientist James Gerken and their colleagues.

Writing this week in the journal Angewandte Chemie, the Wisconsin group describes a new high-throughput method to identify electrocatalysts for water oxidation.

Efficient, earth-abundant electrocatalysts that facilitate the oxidation of water are critical to the production of solar fuels, says Gerken. "If we do this well enough, we can keep the party going all night long."

Existing technology to store solar energy is not economically viable because using the sun to split water into oxygen and hydrogen is inefficient. Water oxidation provides electrons and protons needed for hydrogen production, and better catalysts minimize the energy lost when converting energy from sunlight to chemical fuels, says Stahl.

In addition to being efficient, the catalysts need to be made from materials that are more abundant and far less expensive than metals like platinum and the rare earth compounds currently found in the most effective catalysts.

According to Stahl and Gerken, the discovery of promising electrocatalytic materials is hindered by the costly and laborious approaches used to discover them. What's more, the sheer number of possible catalyst compositions far exceeds the number that can be tested using traditional methods.

In the Angewandte Chemie report, Gerken, Stahl and their colleagues describe a screening method capable of rapidly evaluating potential new electrocatalysts. In simple terms, the technique works using ultraviolet light and a fluorescent paint to test prospective metal-oxide electrocatalysts. A camera captures images from a grid of candidate catalysts during the electrolysis process, as the paint responds to the formation of oxygen. This approach turns out to be a highly efficient way to sort through many compounds in parallel to identify promising leads.

Already, the Wisconsin team has identified several new metal-oxide catalysts that are composed of inexpensive materials such as iron, nickel and aluminum, and that hold promise for use in solar energy storage.

In addition to Gerken and Stahl, authors of the new study include Jamie Y.C. Chen, Robert C. Massé, and Adam B. Powell, all of UW-Madison's department of chemistry. The work was supported by a grant from the U.S. National Science Foundation and a provisional patent has been submitted through the Wisconsin Alumni Research Foundation.
-end-
-- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

University of Wisconsin-Madison

Related Solar Energy Articles from Brightsurf:

'Transparent solar cells' can take us towards a new era of personalized energy
Solar power has shown immense potential as a futuristic, 'clean' source of energy.

CU Denver researcher analyzes the use of solar energy at US airports
By studying 488 public airports in the United States, University of Colorado Denver School of Public Affairs researcher Serena Kim, PhD, found that 20% of them have adopted solar photovoltaic (PV), commonly known as solar panels, over the last decade.

Researchers develop molecule to store solar energy
Researchers at Linköping University, Sweden, have developed a molecule that absorbs energy from sunlight and stores it in chemical bonds.

Converting solar energy to hydrogen fuel, with help from photosynthesis
Global economic growth comes with increasing demand for energy, but stepping up energy production can be challenging.

New nanodevice could use solar energy to produce hydrogen
Amsterdam, June 9, 2020 - Solar energy is considered by some to be the ultimate solution to address the current energy crisis and global warming and the environmental crises brought about by excessive consumption of fossil fuels.

Physicists develop approach to increase performance of solar energy
Experimental condensed matter physicists in the Department of Physics at the University of Oklahoma have developed an approach to circumvent a major loss process that currently limits the efficiency of commercial solar cells.

Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.

Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.

Read More: Solar Energy News and Solar Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.