Nav: Home

From Jungfraujoch Station: How new atmospheric aerosols form

May 25, 2016

New particles form in the lowest layer of Earth's atmosphere through condensation of highly oxygenated compounds, a new study shows, and without sulfuric acid - previously considered essential to nucleation. Future atmospheric models should take these factors into account, the study's authors say, to better represent the process. Cloud condensation nuclei, or CCNs, are small particles on which water vapor from a cloud condenses. Many different types of atmospheric particulates can act as CCNs, including dust, soot, or salt from ocean spray, and the number and types of CCNs in the atmosphere at any one time affect properties of clouds, including their reflective abilities. Scientists are unsure about the fraction of CCNs attributable to newly formed atmospheric aerosol particles in the free troposphere. To date, studies of these particles and their role as CCNs have been limited. Further complicating matters, different models of atmospheric aerosol particle formation rates have provided varying views on what the process requires, with a questionable role for sulfuric acid. Here, to better characterize the process by which new atmospheric aerosol particles form, Federico Bianchi and colleagues used a suite of state-of-the-art mass spectrometers and particle counters at a high-altitude research station in Junfraujoch, Switzerland--a site where new particle formation occurs on 15 to 20% of days. The researchers collected measurements for one year. Among their observations, they found that new particle formation occurred nearly exclusively on days when the concentration of highly oxygenated organic compounds was high, but that these compounds could only contribute to nucleation for a short window (one to three days) after their vertical transport from the planetary boundary layer.
-end-


American Association for the Advancement of Science

Related Atmosphere Articles:

Primitive atmosphere discovered around 'Warm Neptune'
A pioneering new study uncovering the 'primitive atmosphere' surrounding a distant world could provide a pivotal breakthrough in the search to how planets form and develop in far-flung galaxies.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Northern oceans pumped CO2 into the atmosphere
The Norwegian Sea acted as CO2 source in the past.
Study opens new questions on how the atmosphere and oceans formed
A new study led by The Australian National University has found seawater cycles throughout the Earth's interior down to 2,900km, much deeper than previously thought, reopening questions about how the atmosphere and oceans formed.
How a moon slows the decay of Pluto's atmosphere
A new study from the Georgia Institute of Technology provides additional insight into relationship between Pluto and its moon, Charon, and how it affects the continuous stripping of Pluto's atmosphere by solar wind.
Fossil fuel formation: Key to atmosphere's oxygen?
For the development of animals, nothing -- with the exception of DNA -- may be more important than oxygen in the atmosphere.
Researchers dial in to 'thermostat' in Earth's upper atmosphere
A team led by the University of Colorado Boulder has found the mechanism behind the sudden onset of a 'natural thermostat' in Earth's upper atmosphere that dramatically cools the air after it has been heated by violent solar activity.
New biochar model scrubs CO2 from the atmosphere
New Cornell University research suggests an economically viable model to scrub carbon dioxide from the atmosphere to thwart global warming.
Venus-like exoplanet might have oxygen atmosphere, but not life
The distant planet GJ 1132b intrigued astronomers when it was discovered last year.
Middle atmosphere in sync with the ocean
In the late 20th century scientists observed a cooling at the transition between the troposphere and stratosphere at an altitude of about 15 kilometers.

Related Atmosphere Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".