Nav: Home

Scientists create 'magnetic charge ice'

May 25, 2016

ARGONNE, Ill. -- A team of scientists working at the U.S. Department of Energy's (DOE) Argonne National Laboratory has created a new material, called "rewritable magnetic charge ice," that permits an unprecedented degree of control over local magnetic fields and could pave the way for new computing technologies.

The scientists' research report on development of magnetic charge ice is published in the May 20 issue of the journal Science. "With potential applications involving data storage, memory and logic devices, magnetic charge ice could someday lead to smaller and more powerful computers or even play a role in quantum computing." said Zhili Xiao who holds a joint appointment between Argonne and Northern Illinois University.

Current magnetic storage and recording devices, such as computer hard disks, contain nanomagnets with two polarities, each of which is used to represent either 0 or 1--the binary digits, or bits, used in computers. A magnetic charge ice system could have eight possible configurations instead of two, resulting in denser storage capabilities or added functionality unavailable in current technologies.

"Our work is the first success achieving an artificial ice of magnetic charges with controllable energy states," said Xiao. "Our realization of tunable artificial magnetic charge ices is similar to the synthesis of a dreamed material. It provides versatile platforms to advance our knowledge about artificial spin ices, to discover new physics phenomena and to achieve desired functionalities for applications."

Over the past decade, scientists have been highly interested in creating, investigating and attempting to manipulate the unusual properties of "artificial spin ices," so-called because the spins have a lattice structure that follows the proton positioning ordering found in water ice.

Scientists consider artificial spin ices to be scientific playgrounds, where the mysteries of magnetism might be explored and revealed. However, in the past, researchers have been frustrated in their attempts to achieve global and local control of spin-ice magnetic charges.

To overcome this challenge, Xiao and his colleagues decoupled the lattice structure of magnetic spins and the magnetic charges. The scientists used a bi-axis vector magnet to precisely and conveniently tune the magnetic charge ice to any of eight possible charge configurations. They then used a magnetic force microscope to demonstrate the material's local write-read-erase multi-functionality at room temperature.

For example, using a specially developed patterning technique, they wrote the word, "ICE," on the material in a physical space 10 times smaller than the diameter of a human hair.

Magnetic charge ice is two-dimensional, meaning it consists of a very thin layer of atoms, and could be applied to other thin materials, such as graphene. Xiao said the material also is environmentally friendly and relatively inexpensive to produce.

Yong-Lei Wang, who holds a joint appointment with Argonne and Notre Dame University, is first author and co-corresponding author on the Science article. He designed the new artificial magnetic ice structure and built the custom instrumentation for the research.

"Although spin and magnetic charges are always correlated, they can be ordered in different ways," said Wang "This work provides a new way of thinking in solving problems. Instead of focusing on spins, we tackled the magnetic charges that allow more controllability."

There are hurdles yet to overcome before magnetic charge ice could be used in technological devices, Xiao added. For example, a bi-axis vector magnet is required to realize all energy state configurations and arrangements, and it would be challenging to incorporate such a magnet into commercial silicon technology.

"By combining these magnetic nano¬patterned structures with other materials such as superconductors, our rewritable magnetic charge ice provides an ideal and versatile platform to explore and control new emergent properties that can arise from novel hybrid structures," said Wai-Kwong Kwok, who is the group leader of Argonne's Superconductivity and Magnetism group where this work was performed, and is a co¬author on this article.
In addition to Xiao, Wang and Kwok, members of the research team include Xiao's Ph.D. student Jing Xu; scientists Alexey Snezhko, John E. Pearson, and George W. Crabtree in Argonne's Materials Science Division; and scientists Leonidas E. Ocola and Ralu Divan in Argonne's Center for Nanoscale Materials, a DOE Office of Science User Facility.

The research was conducted at Argonne National Laboratory with funding from the DOE's Office of Science and the National Science Foundation.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Magnet Articles:

New magnet technology creates easy blood access for hemodialysis patients
A new, minimally invasive system which uses radiofrequency energy instead of open surgery to create access for patients needing hemodialysis is reliable, with minimal complications, according to data published in the American Journal of Kidney Disease.
Muon magnet's moment has arrived
On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment at Fermilab saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field.
Magnet study sees potential for MRE in measuring liver fibrosis in children
Researchers at University of California San Diego School of Medicine, with collaborators across the nation, have determined that magnetic resonance elastography (MRE) can be an accurate, non-invasive tool to identify liver fibrosis in children.
Berkeley Lab scientists discover new atomically layered, thin magnet
Berkeley Lab scientists have found an unexpected magnetic property in a 2-D material.
Three layers of graphene reveals a new kind of magnet
Scientists at TIFR discover the magnetism of electrons in three layers of graphene.
Can the donut-shaped magnet 'CAPPuccino submarine' hunt for dark matter?
IBS scientists clarify that toroidal magnets can also look for axions, one of the particle candidates for the mysterious dark matter.
3-D-printed magnets
Scientists at TU Wien have found a way to create magnets in a 3-D printer.
Pushing the boundaries of magnet design
A Russian team has been pushing the boundaries of magnet design, as published in a recent study in EPJ Plus.
ORNL licenses rare earth magnet recycling process to Momentum Technologies
The Department of Energy's Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.
ORNL licenses rare earth magnet recycling process to Momentum Technologies
The Department of Energy's Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.

Related Magnet Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".