Nav: Home

Making some of the world's most durable materials corrosion-resistant

May 25, 2016

Borides are among the hardest and most heat-resistant substances on the planet, but their Achilles' Heel, like so many materials', is that they oxidize at high temperatures. Oxidation is the chemical reaction commonly known as corrosion or rusting -- it can signal the end for a material's structural integrity. But researchers from Drexel University, Linkoping University in Sweden and Imperial College London have produced an aluminum-layered boride whose unique behavior at high temperatures keeps it one step ahead of nature's slow march toward high- temperature chemical degradation.

So impressive is their perceived durability, that borides are used as coatings for surfaces that must survive the harshest environments -- from the inside of combustion engines to cutting tools for hard metals. But, according to Michel Barsoum, PhD, distinguished professor in Drexel's College of Engineering who is the lead author of research recently published in Scientific Reports, we can make borides better.

"This discovery is quite significant because it is the first example in the history of mankind of a transition metal boride that is quite oxidation resistant," said Barsoum, who heads Drexel's MAX/MXene Research Group in the Department of Materials Science and Engineering.

To make their boride material, called molybdenum aluminum boride (MoAlB), Barsoum and his team combined a molybdenum-boron lattice with a double layer of aluminum to produce a material that is durable enough to resist oxidation at extremely high temperatures. The key to this remarkable characteristic is the material's nanolaminated structure with alternating layers of molybdenum boride and aluminum -- a form the Drexel group has established a reputation for working with since its creation of MAX phases two decades ago.

"This resistance to oxidation is possible because of the presence of aluminum in layers between molybdenum and boron layers," Barsoum said. "When heated to high temperatures in air the aluminum atoms selectively diffuse to the surface and react with oxygen -- forming a surface aluminum oxide, or alumina, protective layer that slows down further oxidation considerably. So the material forms its own protective coating."

Upon testing, the group also found that the material retains its high conductivity to elevated temperatures. Its melting point has yet to be determined, but preliminary results have shown it to be greater than 1400 degrees Celsius. Barsoum speculates that because of these promising results, his team's work has now laid the foundation for the development of ultrahigh melting point borides that are also oxidation resistant.

"Now we know we're looking in the right place to make materials with this impressive set of properties," said Sankalp Kota, a doctoral student in Barsoum's research group and the paper's first author. "Most people were trying to make the binary borides -- materials with two elements -- oxidation resistant by adding other phases and coatings. One reason we have been this successful at making materials with interesting properties has to do with the number of elements one starts with. With only two elements, it is difficult; with three or higher, the chance of producing a material with a new combination of properties is greater."
-end-


Drexel University

Related Molybdenum Articles:

Solar paint offers endless energy from water vapor
Researchers in Melbourne, Australia, have developed a compound that draws moisture from the air and splits it into oxygen and hydrogen.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Low cost, scalable water-splitting fuels the future hydrogen economy
The 'clean-energy economy' always seems a few steps away but never quite here.
One-dimensional crystals for low-temperature thermoelectric cooling
Nagoya University researchers studied the thermal and electrical properties of one-dimensional crystals composed of tantalum, silicon and tellurium for thermoelectric cooling at temperatures below 250 K (-23°C).
Stenciling with atoms in 2-dimensional materials possible
The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless.
Microprocessors based on a layer of just 3 atoms
Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics.
Unexpected, star-spangled find may lead to advanced electronics
In a recent study, University of Texas at Dallas researchers describe a material that, when heated to about 450 degrees Celsius, transforms from an atomically thin, two-dimensional sheet into an array of one-dimensional nanowires, each just a few atoms wide.
Catalyst adds fluorine-containing groups to make new compounds
MIT and Boston College chemists have discovered and developed a new class of catalysts that can transfer a fluorine-containing chemical group to other molecules.
Cheaper and more sustainable sweeteners
Polyalcohols are widely used in the food industry, especially in candy and gum because they bring the sweet without the risk of cavities.
New findings boost promise of molybdenum sulfide for hydrogen catalysis
Researchers from North Carolina State University, Duke University and Brookhaven National Laboratory have found that molybdenum sulfide (MoS2) holds more promise than previously thought as a catalyst for producing hydrogen to use as a clean energy source.

Related Molybdenum Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...