Nav: Home

Strength and ductility for alloys

May 25, 2016

For the steel industry, there may be a way out of the dilemma that has existed since people began processing metal. Scientists from the Max-Planck-Institut für Eisenforschung in Düsseldorf (Germany) are presenting a new type of metallic material that is extremely strong, but simultaneously ductile. Up until now, one material property could only be improved at the expense of the other - something that is being changed by the Düsseldorf-based researchers, who are entering new terrain in the development of metallic materials. Their work is thus contributing to the future design of metallic components with thinner sheets, and thereby helping to save resources.

Ideally, steels and steel-related alloys should be capable of both properties: they should not fragment, for example during processing in a mill or as car bodies involved in an accident. In other words, they must be "ductile", as materials scientists refer to it. However, they also need to be strong so that they do not warp or break when subjected to weak forces. A team headed by Dierk Raabe, director at the Max-Planck-Institut für Eisenforschung, and Cemal Cem Tasan, formerly head of a research group at this Institute and now professor at the Massachusetts Institute of Technology in the US, has now succeeded in combining both properties in one material. To date, extremely ductile metallic materials were not particularly strong and vice versa.

"We pursued a new strategy in the development of this material, which generally opens up new possibilities for the design of metallic materials," says Dierk Raabe. The team began at a type of material that has been the subject of extensive testing by materials scientists in recent years, but which was too brittle for many applications up until now: alloys in which metallurgists combine similar quantities of typically five or more different metals.

Atomic disorder enables high-strength alloys

As the atoms of the different elements are distributed along the positions in the crystal lattices of these materials without any identifiable order and the entropy is, to a certain extent, a measure for the disorder, the materials are called high-entropy alloys. Such materials can be particularly strong because the disorder of the numerous different atoms in a structure makes it difficult for dislocations to move. Dislocations are defects in the crystal lattice that move through a crystal when a material becomes deformed. However, there has been one disadvantage to the high strength of the alloys with atomic disorder till now: when such a material gives way under pressure, it is usually brittle.

Steels that mainly contain iron, usually another main component and small quantities of other elements like carbon, vanadium or chrome, are, on the other hand, often ductile. They are not brittle; however, up until now they have not been strong enough to enable, for example, the construction of car bodies with thinner sheets. In the crystals of steels, the atoms are more or less regularly arranged. Steels become particularly ductile though if they can switch from one structure to another. This is because this process swallows energy, which can then no longer initiate any damage in the material. In a car body or other steel components, tiny areas then alternate with the two different atom arrangements.

The change in the crystal structure makes the material ductile

It was precisely this coexistence of the different crystal structures that was detrimental to the high-entropy alloys - thus far. "We have now turned this conception on its head, as recent studies have shown that this is not the important factor," says Zhiming Li, who made this scientific turnaround the topic of his project. Together with his colleagues, Li searched for a material that is, on the one hand, as strong as a high-entropy alloy, but, like particularly ductile steels, has two coexisting crystal structures. The search produced an alloy made from 50 per cent iron, 30 per cent manganese and 10 per cent respectively of cobalt and chrome.

"With this alloy, we have shown that our concept works," says Raabe. "If we further improve the microstructure and the composition, we can even further enhance the strength and ductility." This is precisely the area the researchers are now working on. This means that they could, once and for all, solve the metal-processing industry's dilemma of having to choose between strong or ductile materials. The metallic materials from the Düsseldorf-based materials forge could be processed just as easily and cost-efficiently as a particularly ductile steel and absorb as much impact energy in an accident when incorporated in the body of a car. At the same time, the material would be strong enough that thin and thus low-cost and resource-conserving metal sheets do not give way when subjected to a weak force.
-end-
Original publication

Zhiming Li, Konda Gokuldoss Pradeep, Yun Deng, Dierk Raabe & Cemal Cem Tasan
Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
Nature (May 2016)
Published online 18 May 2016

Max-Planck-Gesellschaft

Related Atoms Articles:

Stenciling with atoms in 2-dimensional materials possible
The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless.
Microprocessors based on a layer of just 3 atoms
Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics.
Super sensitive devices work on recycling atoms
Next-generation sensors to be used in fields as diverse as mineral exploration and climate change will be turbo boosted thanks to University of Queensland and University of Sussex research.
Breakthrough with a chain of gold atoms
The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops.
Sorting machine for atoms
Physicists at the University of Bonn have cleared a further hurdle on the path to creating quantum computers: in a recent study, they present a method with which they can very quickly and precisely sort large numbers of atoms.
More Atoms News and Atoms Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...