Nav: Home

Understanding your bacteria

May 25, 2016

Escherichia coli (E. coli) are bacteria that live all around and inside of us. Most E. coli are harmless, but some strains can cause illness, and can even, in extreme cases, be deadly. With recent outbreaks of E. coli around the world, there is a fear of acquiring an infection from these bacteria. An important component of fighting these kinds of bad bacteria is a better understanding of how bacteria divide and multiply. In each bacterium, a large protein complex - called the divisome - governs cell division. The divisome assembles in the middle of the cell to divide the cell and later disassembles to recycle the proteins.

A group of scientists at Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators at Stockholm University showed for the first time how this big protein complex inside living E. coli cells disassembles after each round of division. They have recently published their results in Molecular Microbiology.

"The assembly of this protein complex has been pretty well-studied," Bill Söderström, OIST postdoctoral scholar and first author, said. "However, the disassembly process was largely unknown and we wanted to see whether the process is random or if there is some higher order to it."

In order to visualize what happens inside this protein complex, the researchers made the divisome proteins express fluorescence. Then, they looked at pairs of proteins in the complex using super-resolution microscopy - a special kind of microscopy technique that can discern much smaller things than a traditional optical microscope can - to systematically identify when each protein disassembled. The researchers found that the disassembly process occurred in a controlled order that was very similar to that of the assembly process, following a first-in-first-out principle.

"This outlines in which order the proteins disassemble and it is reproducible," Ulf Skoglund, author and head of OIST's Structural Cellular Biology Unit said. "This is extremely important in helping us to define in which order events are happening."

This technique also allowed the researchers to get initial insights into the way the proteins were organized within the complex and, by extension, how they interacted with each other by identifying an inner and outer ring of different protein groups within the larger complex. The identification of the rings and ordered disassembly process lets the researchers identify where individual proteins are within the bacteria and at what time they stop interacting with each other. Combined, these discoveries are a step towards a more complete understanding of the structure and function of how bacteria divides.

"The more of the steps that you can effectively outline, the more components you can affect with something," Skoglund said. "Then, you can focus on more important and functionally dependent steps and have more options to interact with the system."

This means that in a world where antibiotic resistant bacteria is becoming a real problem, this information could be very useful in creating new methods to target harmful bacteria. By understanding the structure and function of the bacterial division machinery, it could help to pinpoint what to target and at what time during the division process.

"You really can use the knowledge of this protein complex to identify new ways to combat harmful bacteria," Söderström said.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".