Nav: Home

Understanding your bacteria

May 25, 2016

Escherichia coli (E. coli) are bacteria that live all around and inside of us. Most E. coli are harmless, but some strains can cause illness, and can even, in extreme cases, be deadly. With recent outbreaks of E. coli around the world, there is a fear of acquiring an infection from these bacteria. An important component of fighting these kinds of bad bacteria is a better understanding of how bacteria divide and multiply. In each bacterium, a large protein complex - called the divisome - governs cell division. The divisome assembles in the middle of the cell to divide the cell and later disassembles to recycle the proteins.

A group of scientists at Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators at Stockholm University showed for the first time how this big protein complex inside living E. coli cells disassembles after each round of division. They have recently published their results in Molecular Microbiology.

"The assembly of this protein complex has been pretty well-studied," Bill Söderström, OIST postdoctoral scholar and first author, said. "However, the disassembly process was largely unknown and we wanted to see whether the process is random or if there is some higher order to it."

In order to visualize what happens inside this protein complex, the researchers made the divisome proteins express fluorescence. Then, they looked at pairs of proteins in the complex using super-resolution microscopy - a special kind of microscopy technique that can discern much smaller things than a traditional optical microscope can - to systematically identify when each protein disassembled. The researchers found that the disassembly process occurred in a controlled order that was very similar to that of the assembly process, following a first-in-first-out principle.

"This outlines in which order the proteins disassemble and it is reproducible," Ulf Skoglund, author and head of OIST's Structural Cellular Biology Unit said. "This is extremely important in helping us to define in which order events are happening."

This technique also allowed the researchers to get initial insights into the way the proteins were organized within the complex and, by extension, how they interacted with each other by identifying an inner and outer ring of different protein groups within the larger complex. The identification of the rings and ordered disassembly process lets the researchers identify where individual proteins are within the bacteria and at what time they stop interacting with each other. Combined, these discoveries are a step towards a more complete understanding of the structure and function of how bacteria divides.

"The more of the steps that you can effectively outline, the more components you can affect with something," Skoglund said. "Then, you can focus on more important and functionally dependent steps and have more options to interact with the system."

This means that in a world where antibiotic resistant bacteria is becoming a real problem, this information could be very useful in creating new methods to target harmful bacteria. By understanding the structure and function of the bacterial division machinery, it could help to pinpoint what to target and at what time during the division process.

"You really can use the knowledge of this protein complex to identify new ways to combat harmful bacteria," Söderström said.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.