Nav: Home

Why fruit fly sperm are giant

May 25, 2016

In the animal kingdom, sperm usually are considerably smaller than eggs, which means that males can produce far more of them. Large numbers of tiny sperm can increase the probability of successful fertilization, especially when females mate with several males. This is because the competition among sperm from different males to fertilize the few eggs increases as sperm become more abundant. This sperm competition spurs sexual selection after mating, favoring the best sperm in the female reproductive tract.

Therefore, it is astonishing that males of certain animal species produce only very few, but gigantic sperm. "The record holder is Drosophila bifurca: Although this fruit fly is only a few millimeters long, its sperm reach an impressive length of almost six centimeters," says Stefan Luepold, an evolutionary biologist at the University of Zurich. However, such examples contradict the common understanding of sexual selection because fewer sperm vying to fertilize an egg should relax the selection pressure on sperm to be more successful than their competitors. If only a few sperm are transferred to females as in fruit flies, selection - and thus also the evolution of longer sperm - is expected to be weakened or even halted.

Sexual selection has a major impact on sperm length

A study lead by Stefan Luepold and published in the journal Nature now provides the first explanation for the development of such giant sperm. Together with Scott Pitnick and other scientists from Syracuse University and George Washington University in the USA, he managed to demonstrate that sexual selection has a major influence on the evolution of sperm length in fruit flies. The scientists combined experimental, quantitative genetic and comparative studies on sexual traits in various Drosophila species.

The study revealed that, on the one hand, different characteristics and processes of sperm uptake, storage and use in the female reproductive tract favor longer sperm. The longer the sperm become, however, the fewer of them can be produced and transferred. Consequently, females have to mate more frequently to ensure fertilization of their eggs. And each mating creates an opportunity for sexual selection via sperm competition. "In fruit flies, for instance, longer sperm are really good at displacing their competitors from the female reproductive tract, which gives them an advantage in the competition for fertilization. Sexual selection thus favors longer sperm," explains Stefan Luepold, first author of the study.

Females prefer larger males with more sperm

On the other hand, sperm length is influenced by female preferences prior to mating. Small males can invest less in sperm production and therefore use up their sperm reserves after only few copulations. Only large, healthy males that are favored by females can afford to produce more sperm despite the increased energetic costs of longer sperm. As a result, only large males benefit from the frequent mating opportunities. Thanks to this increased reproductive success, the genes for longer sperm are able to spread in the population, which ultimately drives the evolution of longer sperm. These complex relationships can maintain, if not intensify, sexual selection even when only very few sperm end up competing for fertilization.

These new findings reveal that the general understanding of sexual selection needs to be broadened. The evolution of sperm is ultimately based on similar processes as other male sexual traits such as horns to frighten away rivals and ornaments to attract females. "Compared to these and numerous other exaggerated sexual traits, fruit-fly sperm are probably the most extreme example in the animal kingdom," finds Luepold. In the case of Drosophila bifurca, they are around 20 times longer than the male itself and thus transmitted as tightly coiled balls.
-end-


University of Zurich

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".