Nav: Home

Researchers find new way to control light with electric fields

May 25, 2017

Researchers from North Carolina State University have discovered a technique for controlling light with electric fields.

"Our method is similar to the technique used to provide the computing capabilities of computers," says Linyou Cao, an assistant professor of materials science and engineering at NC State and corresponding author of a paper on the work. "In computers, an electric field is used to turn electric current on or off, which corresponds to logic 1 and logic 0, the basis of binary code. With this new discovery, a light may be controlled to be strong or weak, spread or focused, pointing one direction or others by an electric field. We think that, just as computers have changed our way of thinking, this new technique will likely change our way of watching. For instance, it may shape a light into arbitrary patterns, which may find applications in goggle-free virtual reality lenses and projectors, the animation movie industry or camouflage."

Controlling light with electric fields is difficult. Photons, the basic units of light, are neutral - they have no charge, so they usually do not respond to electric fields. Instead, light may be controlled by tuning the refractive index of materials. Refractive index refers to the way materials reflect, transmit, scatter and absorb light. The more one can control a material's refractive index, the more control you have over the light that interacts with that material.

"Unfortunately, it is very difficult to tune refractive index with electric fields," Cao says. "Previous techniques could only change the index for visible light by between 0.1 and 1 percent at the maximum."

Cao and his collaborators have developed a technique that allows them to change the refractive index for visible light in some semiconductor materials by 60 percent - two orders of magnitude better than previous results. The researchers worked with a class of atomically thin semiconductor materials called transition metal dichalcogenide monolayers. Specifically, they worked with thin films of molybdenum sulfide, tungsten sulfide and tungsten selenide.

"We changed the refractive index by applying charge to two-dimensional semiconductor materials in the same way one would apply charge to transistors in a computer chip," Cao says. "Using this technique, we achieved significant, tunable changes in the index within the red range of the visible spectrum."

Currently, the new technique allows researchers to tune the refractive index by any amount up to 60 percent - the greater the voltage applied to the material, the greater the degree of change in the index. And, because the researchers are using the same techniques found in existing computational transistor technologies, these changes are dynamic and can be made billions of times per second.

"This technique may provide capabilities to control the amplitude and phase of light pixel by pixel in a way as fast as modern computers," says Yiling Yu, a recent graduate of NC State and lead author of the paper.

"This is only a first step," Cao says. "We think we can optimize the technique to achieve even larger changes in the refractive index. And we also plan to explore whether this could work at other wavelengths in the visual spectrum."

Cao and his team are also looking for industry partners to develop new applications for the discovery.

The paper, "Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers," is published in the journal Nano Letters. Lead author of the paper is Yiling Yu, a Ph.D. student at NC State. Co-authors include Yifei Yu and Lujun Huang of NC State; Haowei Peng of Temple University; and Liwei Xiong of Wuhan Institute of Technology. The work was done with support from the National Science Foundation under grant ECCS-1508856, and from the Center for the Computational Design of Functional Layered Materials at Temple University, which is funded by the Department of Energy under grant DESC0012575.
-end-


North Carolina State University

Related Electric Field Articles:

Electric cars better for climate in 95% of the world
Fears that electric cars could actually increase carbon emissions are unfounded in almost all parts of the world, news research shows.
O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment
Nanoscale texturing, drilling, cutting and spatial sculpturing require not only high accuracy, but also the capability of manufacturing in the atmospheric environment.
What to expect when you're expecting electric transportation
While electric vehicles alone may not reduce carbon emissions, a new study reveals that when electric vehicles are powered with renewable energy and coupled with carbon policy strategies, they can help combat climate change without sacrificing economic growth.
Electric solid propellant -- can it take the heat?
Electric solid propellants are being explored as a safer option for pyrotechnics, mining, and in-space propulsion because they only ignite with an electric current.
Electric scooter injuries, hospital admissions in US
Electric scooters are increasingly used as fast and convenient transportation in the United States.
New pulsed electric field technology could lead to less invasive tumor molecular profiling
New technology devised by Tel Aviv University (TAU), Herzliyah Interdisciplinary (IDC) and Technion-Israel Institute of Technology researchers may soon offer an alternative to invasive and risky biopsies as a means of profiling tumor tissues.
Electric tech could help reverse baldness
Reversing baldness could someday be as easy as wearing a hat, thanks to a noninvasive, low-cost hair-growth-stimulating technology developed by engineers at the University of Wisconsin-Madison.
Is it safe to use an electric fan for cooling?
The safety and effectiveness of electric fans in heatwaves depend on the climate and basing public health advice on common weather metrics could be misleading, according to a new study from the University of Sydney.
Dowsing for electric fields in liquid crystals
Nematic liquid crystals can be oriented in a curious way termed the 'dowser texture', which is sensitive to external conditions.
Electric-field-controlled superconductor-ferromagnetic insulator transition
Xianhui Chen's group at University of Science and Technology of China observed an electric-field controlled reversible transition from superconductor to ferromagnetic insulator in (Li,Fe)OHFeSe thin flake using the latest SIC-FET gating technique.
More Electric Field News and Electric Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.