Nav: Home

Study implicates 2 genetic variants in bicuspid aortic valve development

May 25, 2017

Researchers are working to determine why the aortic valve doesn't form correctly in patients with the most common congenital heart defect: bicuspid aortic valve.

In a new Nature Communications study, the Michigan Medicine-led group found two genetic variants associated with the condition.

Bicuspid aortic valve is moderately heritable, yet experts are still figuring out which part of our DNA code explains why some BAV patients inherit the disease.

"We've completed the first successful genomewide study of bicuspid aortic valve, by studying subjects at U-M's Frankel Cardiovascular Center," says first author Bo Yang, M.D., Ph.D., a Michigan Medicine cardiac surgeon. "We are using state-of-the-art technology of induced stem cell and gene editing to dissect the genomic region we found to be associated with BAV. It's a great collaboration that will accelerate our scientific understanding of this disease."

BAV patients have aortic valves with only two leaflets, rather than three, limiting the valve's function as the heart pumps oxygen-rich blood toward the aorta to enrich the body. The condition is associated with various complications, including a narrowed valve (aortic stenosis), a leaky valve (aortic insufficiency or regurgitation), an infection of the valve or an aortic aneurysm.

'A great head start'

The researchers performed genomewide association scans of 466 BAV cases from the Frankel Cardiovascular Center and 4,660 controls from the Michigan Genomics Initiative, with replication on 1,326 cases and 8,103 controls from collaborators at other leading institutions. They also reprogrammed the matured white blood cells to change them back into immortal cells (stem cells) and changed the genetic code of those cells to study the function of the variants they identified through the genomewide association study.

The team reports two genetic variants, both affecting a key cardiac transcription factor called GATA4, reached or nearly reached genomewide significance in BAV. GATA4 is a protein important to cardiovascular development in the womb, and GATA4 mutations have been associated with other cardiovascular defects.

"One of the regions we identify actually changes the protein coded by the gene, and the other likely changes expression levels of GATA4 during valve formation," says senior author Cristen Willer, Ph.D., professor of internal medicine, human genetics and computational medicine and bioinformatics. "Because most genetic variants associated with human disease are in the 99 percent of the genome that doesn't code for proteins, this finding gives us a great head start toward understanding the mechanism of how a genetic change outside the protein-coding part of the genome can lead to disease."

Specifically, the authors point to a disruption during the endothelial-mesenchymal transition, which is a critical step in the development of the aortic valve. Willer and Yang say this study, with support from the Frankel CVC and the Bob and Ann Aikens Aortic Program, adds new knowledge about the mechanism of BAV formation. They plan to continue to study the biological effect of both variants associated BAV in cells and animal models.
-end-
Collaborators from a variety of institutions provided replication of the result, including Harvard Medical School, the University of Texas, the Montreal Heart Institute, the Karolinska Institute and Icahn School of Medicine at Mount Sinai.

Michigan Medicine - University of Michigan

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...