Nav: Home

Solving the riddle of the snow globe

May 25, 2017

If you've shaken a snow globe, you've enjoyed watching its tiny particles slowly sink to the bottom. But do all small objects drift the same way and at the same pace?

A new Tel Aviv University study finds the sedimentation of asymmetric objects in liquid is very different from that of symmetrical objects like spheres. The research solves a long-standing puzzle concerning the cause and the extent of "storminess" in sedimentation, and may be useful in improving water treatment and industrial processes that rely on suspensions, which are liquids that contain small solid particles. The research may also have use in the study of geological deposits, because variations in the concentration of particles from place to place affect the progress of sedimentation.

The research was led by Prof. Haim Diamant of TAU's School of Chemistry in collaboration with Prof. Thomas Witten of the University of Chicago, and conducted by TAU doctoral student Tomer Goldfriend. It was sponsored by the US-Israel Binational Science Foundation (BSF) and published in Physical Review Letters.

The calm and the storm

"Our research clarifies a common, complex phenomenon and offers ways of controlling it," Prof. Diamant said. "We have demonstrated that the 'storminess' of sedimentation is specific to symmetrical objects such as spheres and ellipsoids. It disappears in the more general case of asymmetric objects, which can have arbitrary shapes. Asymmetric objects render the sedimentation process more uniform and less chaotic."

Certain chemical reactors and water-treatment facilities rely on processes closely related to sedimentation, Prof. Diamant explained. "These are called 'fluidized beds,' where settling particles are made to hover in the liquid by an opposing upward flow of liquid, which facilitates their chemical activity. Fluidized beds are used in the production of polymers such as rubber and polyethylene. They are also used to improve the efficiency of water and waste treatment facilities. Our work might lead to improvements of such processes by controlling the uniformity of particles distributed in the liquid."

The team is currently studying the organizational properties of other kinds of materials. "We now intend to look for physical scenarios other than sedimentation that may show a similar kind of 'self-taming' -- that is, a tendency of the material's constituents to self-organize into extremely uniform configurations," Prof. Diamant said. "The basic question is whether the behavior that we have found is unique to the process of sedimentation or can be found in a much broader class of materials. We think -- we hope -- that the latter is true."
American Friends of Tel Aviv University (AFTAU) supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. For three years in a row, TAU ranked 9th in the world, and first in Israel, for alumni going on to become successful entrepreneurs backed by significant venture capital, a ranking that surpassed several Ivy League universities. To date, 2,400 patents have been filed out of the University, making TAU 29th in the world for patents among academic institutions.

American Friends of Tel Aviv University

Related Water Articles:

Water, water, nowhere
Researchers at the University of Pittsburgh's Swanson School of Engineering have found that the unusual properties of graphane -- a two-dimensional polymer of carbon and hydrogen -- could form a type of anhydrous 'bucket brigade' that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems.
Advantage: Water
When water comes in for a landing on the common catalyst titanium oxide, it splits into hydroxyls just under half the time.
What's really in the water
Through a five-year, $500,000 CAREEER Award from the National Science Foundation, a civil and environmental engineering research group at the University of Pittsburgh's Swanson School of Engineering will be developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health.
Jumping water striders know how to avoid breaking of the water surface
When escaping from attacking predators, different water strider species adjust their jump performance to their mass and morphology in order to jump off the water as fast and soon as possible without breaking of the water surface.
Water, water -- the two types of liquid water
There are two types of liquid water, according to research carried out by an international scientific collaboration.
More Water News and Water Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...