Nav: Home

Brain images reveal roots of kids' increasing cognitive control

May 25, 2017

As children age into adolescence and on into young adulthood, they show dramatic improvements in their ability to control impulses, stay organized, and make decisions. Those "executive functions" of the brain are key factors in determining outcomes, including educational success, drug use, and psychiatric illness. Now, researchers reporting in Current Biology on May 25 have mapped the changes in the network organization of the brain that underlie those improvements in executive function.

The study reveals that the maturing brain becomes increasingly segregated into distinct network modules for greater efficiency. Indeed, the new evidence shows that the degree to which executive function improves in a person with age depends on the degree to which that well-defined modular network structure emerges.

"We were surprised to find that the developmental refinement of structural brain networks involved increased modular segregation and global integration, since highly modular systems have the potential to become fragmented," says Ted Satterthwaite (@sattertt), an assistant professor of Psychiatry in the Perelman School of Medicine at the University of Pennsylvania.. "This increasingly modular yet globally integrated network topology may maximize communication efficiency while minimizing wiring costs in the brain."

The findings suggest that modular brain architecture is critical for the development of complex cognition and behavior. They could also lead to the identification of biomarkers of abnormal brain development that could predict a person's risk for psychosis and major mood disorders, the researchers say.

Satterthwaite and his colleagues set out to define the normal development of structural network modules and its relationship to executive functioning. They capitalized upon a large sample of 882 youths between the ages of 8 and 22 who completed diffusion imaging as part of the Philadelphia Neurodevelopmental Cohort, a community-based study of brain development that includes rich neuroimaging and cognitive data.

As expected, executive function improved markedly in study participants with age. An analysis of the brain images revealed an increasingly specialized and modular structure that was nonetheless fully integrated.

"The development of modular network architecture did not result in the brain becoming fragmented," explains the study's first author Graham Baum (@graham_baum), a PhD candidate in the Perelman School of Medicine at the University of Pennsylvania. "In fact, the overall network communication capacity actually increased, due to strengthening of specific 'hub' connections between modules. These results show that as kids grow up, their brain becomes more segregated into specialized units, but also more integrated as a whole."

The researchers suggest that a globally integrated network architecture may be critical for supporting specialized processing and reducing interference between brain systems. At the same time, the increase in global integration may allow those specialized parts to work together in a coordinated fashion. The researchers also found a relationship between the emergence of that modular structure and a person's performance on tests of executive function.

The researchers say they are now combining structural and functional imaging techniques to examine how structural brain networks constrain and shape functional brain networks and activation patterns. They will also investigate whether information about brain networks can predict the emergence of psychiatric disorders in children years later.
-end-
This work was primarily supported by the National Institute of Mental Health.

Current Biology, Baum et al.: "Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth" http://www.cell.com/current-biology/fulltext/S0960-9822(17)30496-7

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.