Nav: Home

Water forms 'spine of hydration' around DNA, group finds

May 25, 2017

Water is the Earth's most abundant natural resource, but it's also something of a mystery due to its unique solvation characteristics -- that is, how things dissolve in it.

"It's uniquely adapted to biology, and vice versa," said Poul Petersen, assistant professor of chemistry and chemical biology at Cornell University. "It's super-flexible. It dissipates energy and mediates interactions, and that's becoming more recognized in biological systems."

How water relates to and interacts with those systems -- like DNA, the building block of all living things -- is of critical importance, and Petersen's group has used a relatively new form of spectroscopy to observe a previously unknown characteristic of water.

"DNA's chiral spine of hydration," published May 24 in the American Chemical Society journal Central Science, reports the first observation of a chiral water superstructure surrounding a biomolecule. In this case, the water structure follows the iconic helical structure of DNA, which itself is chiral, meaning it is not superimposable on its mirror image. Chirality is a key factor in biology, because most biomolecules and pharmaceuticals are chiral.

"If you want to understand reactivity and biology, then it's not just water on its own," Petersen said. "You want to understand water around stuff, and how it interacts with the stuff. And particularly with biology, you want to understand how it behaves around biological material -- like protein and DNA."

Water plays a major role in DNA's structure and function, and its hydration shell has been the subject of much study. Molecular dynamics simulations have shown a broad range of behaviors of the water structure in DNA's minor groove, the area where the backbones of the helical strand are close together.

The group's work employed chiral sum frequency generation spectroscopy (SFG), a technique Petersen detailed in a 2015 paper in the Journal of Physical Chemistry. SFG is a nonlinear optical method in which two photon beams -- one infrared and one visible -- interact with the sample, producing an SFG beam containing the sum of the two beams' frequencies, or energies. In this case, the sample was a strand of DNA linked to a silicon-coated prism.

More manipulation of the beams and calculation proved the existence of a chiral water superstructure surrounding DNA.

In addition to the novelty of observing a chiral water structure template by a biomolecule, chiral SFG provides a direct way to examine water in biology.

"The techniques we have developed provide a new avenue to study DNA hydration, as well as other supramolecular chiral structures," Petersen said.

The group admits that their finding's biological relevance is unclear, but Petersen thinks the ability to directly examine water and its behavior within biological systems is important.

"Certainly, chemical engineers who are designing biomimetic systems and looking at biology and trying to find applications such as water filtration would care about this," he said.

Another application, Petersen said, could be in creating better anti-biofouling materials, which are resistant to the accumulation of microorganisms, algae and the like on wetted surfaces.
-end-
Collaborators included M. Luke McDermott; Heather Vanselous, a doctoral student in chemistry and chemical biology and a member of the Petersen Group; and Steven Corcelli, professor of chemistry and biochemistry at the University of Notre Dame.

This work was supported by grants from the National Science Foundation and the Arnold and Mable Beckman Foundation, and made use of the Cornell Center for Materials Research, an NSF Materials Research Science and Engineering Center.

Cornell University

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
New DNA synthesis technique promises rapid, high-fidelity DNA printing
Today, DNA is synthesized as an organic chemist would, using toxic chemicals and error-prone steps that limit accuracy and thus length to about 200 base pairs.
The changing shape of DNA
The shape of DNA can be changed with a range of triggers including copper and oxygen - according to new research from the University of East Anglia.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.