Nav: Home

A flip switch for binge-eating?

May 25, 2017

Researchers have identified a subgroup of neurons in the mouse brain that, upon activation, immediately prompt binge-like eating. Furthermore, repeated stimulation of these neurons over time caused the mice to gain weight. The zona incerta (ZI) is a relatively understudied part of the brain. Intriguingly, patients receiving deep brain stimulation of the subthalamus, which includes the ZI, for the treatment of movement disorders can exhibit characteristics of binge eating. To explore this phenomenon in greater detail, Xiaobing Zhang and Anthony N. van den Pol optogenetically labelled GABA neurons in the ZIs of mice. They found that stimulating ZI GABA neurons with axons extending into the paraventricular thalamus (PVT) prompted immediate binge-like eating, just two to three seconds after stimulation. Within ten minutes of continuous ZI GABA stimulation, mice rapidly consumed 35% of their daily high-fat food store, meant to be eaten over a 24-hour period. The researchers also found that ghrelin, a hormone that signals a reduced energy state in the gut, excited ZI GABA neurons. Upon stimulating the subgroup of ZI neurons for five minutes every three hours over a period of two weeks, the mice significantly increased their food intake, and gained weight. Yet, once photostimulation was over, the mice showed a significantly reduced food intake compared with that of controls. Lastly, the authors found that stimulation of excitatory axons from the parasubthalamic nucleus to PVT or direct stimulation of glutamate neurons in the PVT reduced food intake.
-end-


American Association for the Advancement of Science

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.