Nav: Home

First results from Juno show cyclones and massive magnetism

May 25, 2017

On 27 August 2016, the Juno spacecraft made its first close pass around our solar system's largest planet, Jupiter, obtaining insights into its atmosphere and interior that challenge previous assumptions. The Juno mission, which launched in 2011 and began its first orbit last year, allows scientists to view Jupiter in new ways because of its highly elliptical orbit; it passes over the planet's poles and dives within 5,000 kilometers of its cloud tops. Now two new studies in Science report the results of its initial Jupiter encounters. In one study, Scott Bolton et al. present results from Juno's flight just above the cloud tops. Images of Jupiter's previously-unseen poles show a chaotic scene of bright oval features, very different from Saturn's polar regions. A time-lapse of Juno images reveals that the ovals are cyclones, some of which reach diameters up to 1,400 kilometers across. Juno measured the thermal structure of Jupiter's deep atmosphere as it passed over the cloud tops. These data show unexpected structures, which the authors interpret as signs of ammonia welling up from the deep atmosphere and forming giant weather systems. Measurements of Jupiter's gravitational field were made, which will help understand the structure of the planet's atmosphere and whether it has a solid core, as models have predicted. Analysis of the gas giant's magnetic field reveals that close to the planet, the field greatly exceeded expectations - it is substantially stronger than models predicted, at 7.766 Gauss, or roughly ten times Earth's magnetic field.

In a second study, John Connerney et al. present data on Jupiter's aurorae and magnetosphere, the region where the planet's magnetic field dominates over the solar wind. Juno encountered the giant planet's bow shock, essentially a stationary shockwave, as it entered the magnetosphere on 24 June 2016. Since the spacecraft only encountered one bow shock as it approached the planet, compared to multiple encounters on subsequent orbits, this suggests that the magnetosphere was expanding in size at the time, the authors say. Taking advantage of its unique perspective when positioned above the poles, Juno detected downward-traveling electron beams that shower energy into Jupiter's upper atmosphere, potentially powering the huge aurorae that Juno saw in ultraviolet and infrared images. Intriguingly these electron showers appear to have a different distribution from those that occur on Earth, suggesting a radically different conceptual model of Jupiter's interaction with its space environment, the authors say.
-end-


American Association for the Advancement of Science

Related Magnetic Field Articles:

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.