Nav: Home

Viral protein may help chickenpox virus spread within the body

May 25, 2017

The virus that causes chickenpox--varicella zoster virus (VZV)--possesses a protein that could enhance its ability to hijack white blood cells and spread throughout the body, according to new research published in PLOS Pathogens.

The findings, presented by Víctor González-Motos of Hannover Medical School, Germany, and colleagues, may provide new insight into the poorly understood mechanism by which VZV spreads after initial infection in the respiratory tract.

VZV causes chickenpox in children and can reactivate later in life to cause shingles. After infecting the respiratory tract, the virus hijacks the immune system's white blood cells, using them to spread in the body--including to the skin to cause chickenpox.

To better understand this process, the researchers investigated whether VZV influences the function of chemokines, small immune system proteins that attract white blood cells to sites of infection and guide their movement within the body.

The scientists focused on a VZV protein known as glycoprotein C, since previous research suggested it may play an important role in the infection cycle. In the lab, they performed chemotaxis experiments and found that the addition of glycoprotein C enhances the ability of chemokines to attract white blood cells, including white blood cells from the tonsils, which are a major target of VZV during initial infection.

Further experiments uncovered the molecular details of the interaction between glycoprotein C and chemokines. The researchers also showed that VZV viral particles that had been genetically engineered to remove glycoprotein C had a reduced ability to enhance chemokine attraction of white blood cells, indicating the importance of glycoprotein C for this process.

Overall, these results suggest that glycoprotein C may interact with chemokines to attract more white blood cells to the site of VZV infection, where the virus can hijack the white blood cells to spread to other parts of the body. Further research is needed to investigate whether this hypothesis holds up in human tissue.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006346

Citation: González-Motos V, Jürgens C, Ritter B, Kropp KA, Durán V, Larsen O, et al. (2017) Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathog 13(5): e1006346. https://doi.org/10.1371/journal.ppat.1006346

Funding: This work was supported by the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony to TFS, BS and AVB, by a Marie Curie Career Integration Grant to AVB (FP7-PEOPLE-2013-CIG, project number 631792, acronym INMA), by the Deutsche Forschungsgemeinschaft funded SFB-900 to AVB (TPB9), BS (TPC2) and TK (TPB10) and by the Deutsche Forschungsgemeinschaft funded "Excellent Cluster REBIRTH" to BS (Unit 8.1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: AEIP's affiliation is NovImmune, Geneva, Switzerland. The authors have declared that no competing interests exist.

PLOS

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...