Nav: Home

Viral protein may help chickenpox virus spread within the body

May 25, 2017

The virus that causes chickenpox--varicella zoster virus (VZV)--possesses a protein that could enhance its ability to hijack white blood cells and spread throughout the body, according to new research published in PLOS Pathogens.

The findings, presented by Víctor González-Motos of Hannover Medical School, Germany, and colleagues, may provide new insight into the poorly understood mechanism by which VZV spreads after initial infection in the respiratory tract.

VZV causes chickenpox in children and can reactivate later in life to cause shingles. After infecting the respiratory tract, the virus hijacks the immune system's white blood cells, using them to spread in the body--including to the skin to cause chickenpox.

To better understand this process, the researchers investigated whether VZV influences the function of chemokines, small immune system proteins that attract white blood cells to sites of infection and guide their movement within the body.

The scientists focused on a VZV protein known as glycoprotein C, since previous research suggested it may play an important role in the infection cycle. In the lab, they performed chemotaxis experiments and found that the addition of glycoprotein C enhances the ability of chemokines to attract white blood cells, including white blood cells from the tonsils, which are a major target of VZV during initial infection.

Further experiments uncovered the molecular details of the interaction between glycoprotein C and chemokines. The researchers also showed that VZV viral particles that had been genetically engineered to remove glycoprotein C had a reduced ability to enhance chemokine attraction of white blood cells, indicating the importance of glycoprotein C for this process.

Overall, these results suggest that glycoprotein C may interact with chemokines to attract more white blood cells to the site of VZV infection, where the virus can hijack the white blood cells to spread to other parts of the body. Further research is needed to investigate whether this hypothesis holds up in human tissue.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006346

Citation: González-Motos V, Jürgens C, Ritter B, Kropp KA, Durán V, Larsen O, et al. (2017) Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathog 13(5): e1006346. https://doi.org/10.1371/journal.ppat.1006346

Funding: This work was supported by the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony to TFS, BS and AVB, by a Marie Curie Career Integration Grant to AVB (FP7-PEOPLE-2013-CIG, project number 631792, acronym INMA), by the Deutsche Forschungsgemeinschaft funded SFB-900 to AVB (TPB9), BS (TPC2) and TK (TPB10) and by the Deutsche Forschungsgemeinschaft funded "Excellent Cluster REBIRTH" to BS (Unit 8.1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: AEIP's affiliation is NovImmune, Geneva, Switzerland. The authors have declared that no competing interests exist.

PLOS

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
The immune system's fountain of youth
Helping the immune system clear away old cells in aging mice helped restore youthful characteristics.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.