Nav: Home

Multiscale modeling reveals key events during early atherosclerotic plaque development

May 25, 2017

A new computational modeling technique could indicate when atherosclerotic plaques will likely undergo rapid growth, reports a study published this week in PLOS Computational Biology.

Atherosclerosis is a form of vascular disease that can result in heart attacks, strokes and gangrene by causing the thickening of artery walls and then narrowing of the arteries themselves at plaque locations. Every year, atherosclerotic plaques rupture and cause millions of deaths worldwide. While patient imaging is advancing and now gives clinicians the ability to detect the geometry and composition of blood vessels, and even the dynamics of blood flow within an artery, the ability to process and interpret such information is still lacking.

Rita Bhui and Heather Hayenga at the University of Texas, Dallas, have developed a three-dimensional computational approach to appropriately capture and integrate crucial spatiotemporal events, in order to predict white blood cell movement from the blood into the artery wall, and the subsequent plaque evolution.

The researchers coupled two computational modeling techniques, agent-based modeling (ABM) and computational fluid dynamics (CFD), in order to simulate the complex phenomena in inflammation-induced atherosclerotic development. This approach provides explanatory insight into the collective behavior of agents, i.e. cells, obeying simple rules. Unlike previous models that only consider biochemical processes or focus on a specific process of the disease, their model reveals how mechanical forces from the blood flow influence white blood cell migration into the artery wall in addition to the effect of biochemical processes occurring within the artery wall.

Using the model the researchers discovered neutrophils, a type of white blood cell, are the primary cell type in the plaque at two timepoints during atherosclerosis: 1) in the beginning and 2) when the plaque starts to restrict the blood flow. Moreover, the model suggests favorable hemodynamics for plaque growth occur in steps rather than linearly. Potential practical applications in knowing how a plaque grows, and the main cell types within the plaque at different stages of growth, could inform clinicians in choosing the most effective treatment plan.

Looking to the future, the research group aims to expand on the model to make it more patient-specific. "One day multiscale modeling of plaque evolution will be used for individualized decision making, such as deciding whether or not to treat a patient's lesion. It will also be foundational in optimizing design and interventional approaches, such as theorizing how an artery will respond to a pharmaceutical agent or stent design," Hayenga says.
This press release is based on text provided by the authors.

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:

Citation: Bhui R, Hayenga HN (2017) An agent-based model of leukocyte transendothelial migration during atherogenesis. PLoS Comput Biol 13(5): e1005523.

Funding: Funding from the American Heart Association Scientist Development Grant (17SDG33400239) to HNH was used to support this work The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.


Related Atherosclerosis Articles:

Atherosclerosis progresses rapidly in healthy people from the age of 40
A CNIC study published in JACC demonstrates that atheroma plaques extend rapidly in the arteries of asymptomatic individuals aged between 40 and 50 years participating in the PESA-CNIC-Santander study.
Discovery may illuminate a missing link between atherosclerosis and aging
Using a preclinical model of atherosclerosis, Feinberg and colleagues have uncovered a long, noncoding RNA (lncRNA) that may point the way toward new therapies for atherosclerosis and shed light on why the likelihood of the disease increases with age.
Scaling up a nanoimmunotherapy for atherosclerosis through preclinical testing
By integrating translational imaging techniques with improvements to production methods, Tina Binderup and colleagues have scaled up a promising nanoimmunotherapy for atherosclerosis in mice, rabbits and pigs -- surmounting a major obstacle in nanomedicine.
Bladder drug linked to atherosclerosis in mice
A drug used in the treatment of overactive bladder can accelerate atheroclerosis in mice, researchers at Karolinska Institutet in Sweden report in a study published in the Proceedings of the National Academy of Sciences (PNAS).
Atherosclerosis: Induced cell death destabilizes plaques
Many chronic disorders arise from misdirected immune responses. A Ludwig-Maximilians-Universitaet (LMU) in Munich team led by Oliver Söhnlein now shows that neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death and that a tailored peptide inhibits the process.
A new therapeutic target for blocking early atherosclerosis in progeria
Researchers at the Centro Nacional de Investigaciones Cardiovasculares and the Universidad de Oviedo have discovered a new molecular mechanism involved in the premature development of atherosclerosis in mice with Hutchinson-Gilford progeria syndrome.
Protective mechanism against atherosclerosis discovered
Immune cells promoting inflammation play a crucial role in the development of atherosclerosis.
Atherosclerosis: Stopped on time
For the first time, LMU researchers are pointing out the influence of the internal clock on atherosclerosis.
New actors identified in atherosclerosis
Stroke and heart attack are the leading cause of death in the Western world.
Running multiple marathons does not increase risk of atherosclerosis
Running multiple marathons does not increase the risk of atherosclerosis, according to research published today in the European Journal of Preventive Cardiology.
More Atherosclerosis News and Atherosclerosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at