Nav: Home

Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe

May 25, 2017

CORVALLIS, Ore. - Sediment that eroded from the Himalayas and Tibetan plateau over millions of years was transported thousands of kilometers by rivers and in the Indian Ocean -- and became sufficiently thick over time to generate temperatures warm enough to strengthen the sediment and increase the severity of the catastrophic 2004 Sumatra earthquake.

The magnitude 9.2 earthquake on Dec. 26, 2004, generated a massive tsunami that devastated coastal regions of the Indian Ocean. The earthquake and tsunami together killed more than 250,000 people making it one of the deadliest natural disasters in history.

An international team of scientists that outlined the process of sediment warming says the same mechanism could be in place in the Cascadia Subduction Zone off the Pacific Northwest coast of North America, as well as off Iran, Pakistan and in the Caribbean.

Results of the research, which was conducted as part of the International Ocean Discovery Program, are being published this week in the journal Science.

"The 2004 Indian Ocean tsunami was triggered by an unusually strong earthquake with an extensive rupture area," said expedition co-leader Lisa McNeill, an Oregon State University graduate now at the University of Southampton. "We wanted to find out what caused such a large earthquake and tsunami, and what it might mean for other regions with similar geological properties."

The research team sampled for the first time sediment and rocks from the tectonic plate that feeds the Sumatra subduction zone. From the research vessel JOIDES Resolution, the team drilled down 1.5 kilometers below the seabed, measured different properties of the sediments, and ran simulations to calculate how the sediment and rock behaves as it piles up and travels eastward 250 kilometers toward the subduction zone.

"We discovered that in some areas where the sediments are especially thick, dehydration of the sediments occurred before they were subducted," noted Marta Torres, an Oregon State University geochemist and co-author on the study. "Previous earthquake models assumed that dehydration occurred after the material was subducted, but we had suspected that it might be happening earlier in some margins.

"The earlier dehydration creates stronger, more rigid material prior to subduction, resulting in a very large fault area that is prone to rupture and can lead to a bigger and more dangerous earthquake."

Torres explained that when the scientists examined the sediments, they found water between the sediment grains that was less salty than seawater only within a zone where the plate boundary fault develops, some 1.2 to 1.4 kilometers below the seafloor.

"This along with some other chemical changes are clear signals that it was an increase in temperature from the thick accumulation of sediment that was dehydrating the minerals," Torres said.

Lead author Andre Hüpers of the University of Bremen in Germany said that the discovery will generate new interest in other subduction zone sites that also have thick, hot sediment and rock, especially those areas where the hazard potential is unknown.

The Cascadia Subduction Zone is one of the most widely studied sites in the world and experts say it may have experienced as many as two dozen major earthquakes over the past 10,000 years.

The sediment at the Cascadia deformation front is between 2.5 and 4.0 kilometers thick, which is somewhat less than the 4-5 kilometer thickness of the Sumatra region. However, because the subducting plate at Cascadia is younger when the plate arrives at the subduction zone, the estimated temperatures at the fault surface are about the same in both regions.
-end-
Torres is a professor in Oregon State University's College of Earth, Ocean, and Atmospheric Sciences.

Oregon State University

Related Earthquake Articles:

From where will the next big earthquake hit the city of Istanbul?
Scientists reckon with an earthquake with a magnitude of 7 or greater in this region in the coming years.
Dissection of the 2015 Bonin deep earthquake
Researchers at Tohoku University's Department of Geophysics, have been studying the deep earthquake which occurred on May 30, 2015, to the west of Japan's Bonin Islands.
The search for the earthquake nucleus
Where a tectonic plate dives under another, in the so-called subduction zones at ocean margins, many strong earthquakes occur.
Better understanding post-earthquake fault movement
Preparation and good timing enabled Gareth Funning and a team of researchers to collect a unique data set following the 2014 South Napa earthquake that showed different parts of the fault, sometimes only a few kilometers apart, moved at different speeds and at different times.
The maximum earthquake magnitude for North Turkey
The Istanbul metropolitan region faces a high probability for a large earthquake in the near future.
Double dose of bad earthquake news
A team of researchers, including one from the University of California, Riverside, has discovered that earthquake ruptures can jump much further than previously thought, a finding that could have severe implications on the Los Angeles area and other regions in the world.
Discovery of hidden earthquake presents challenge to earthquake early-warning systems
Seismologists at the University of Liverpool studying the 2011 Chile earthquake have discovered a previously undetected earthquake which took place seconds after the initial rupture.
Babe Ruth and earthquake hazard maps
Northwestern University researchers have turned to an unusual source -- Major League Baseball -- to help learn why maps used to predict shaking in future earthquakes often do poorly.
Earthquake rupture halted by seamounts
Experts expected for some time that one of the next mega earthquakes occurs off northern Chile.
Catastrophic landslides post-earthquake
In the last few months, it has once more become clear that large earthquakes can solicit catastrophic landsliding.

Related Earthquake Reading:

Quakeland: On the Road to America's Next Devastating Earthquake
by Kathryn Miles (Author)

The Great Quake: How the Biggest Earthquake in North America Changed Our Understanding of the Planet
by Crown

Earthquakes (True Books: Earth Science (Paperback))
by Ker Than (Author)

9.0 Cascadia Earthquake Survival: How to Survive the Coming Megathrust Quake That Will Devastate the Pacific Northwest

Full-Rip 9.0: The Next Big Earthquake in the Pacific Northwest
by Sandi Doughton (Author)

I Survived the San Francisco Earthquake, 1906 (I Survived #5)
by Scholastic Inc.

Earthquakes (Smithsonian-science)
by Seymour Simon (Author)

Geotechnical Earthquake Engineering
by Steven L Kramer (Author)

Earthquakes: 2006 Centennial Update
by Bruce Bolt (Author)

National Geographic Kids Everything Volcanoes and Earthquakes: Earthshaking photos, facts, and fun!
by Kathy Furgang (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.