Nav: Home

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation

May 25, 2020

Light carrying photon momentum can push and pull microparticles through momentum exchange. This momentum exchange progress generates optical forces, either attracts (conventional optical tweezers), pushes (radiation force) or pulls (pulling force) microparticles. A new emerging research interest, optical lateral force which represents the optical force perpendicular to the propagating direction of a non-gradient beam, has attracted much attention. The lateral force can be generated using achiral particles through the conversion of spin and orbital momentum of a circularly polarized beam. It is also predicted that a chiral nanoparticle placed above a surface can generate the lateral force using a plane wave excitation. However, there are few demonstrations of the chirality dependent lateral force, and the particle used in the theoretical prediction are 100 nm which has limited applications. Besides, the theory of optical lateral force on bigger particles (size ~ wavelength) is lacking.

In a new paper published in Light Science & Application, scientists designed an experiment to demonstrate the chirality-dependent optical lateral force. They synthesize microparticles with strong chirality and float them at the interface of air and water. After illuminated with an obliquely incident linearly polarized beam, chiral microparticles with different handedness (left and right) will move to the opposite directions. Interestingly, they find in theory that the optical lateral force could reverse sign with different light polarization and indecent angle, chirality value and particle size. They also developed intriguing models in the perspective of momentum transfer to elaborate this optical lateral force. The reported method and technique will open new avenues for future direct detection and sorting of microparticles with imperceptible chemical differences and inspire the exploration of optical phenomena with light-matter interactions.

The experimental setup is facile, only requiring a s- or p-polarized laser beam and focusing it into an elliptical shape using two cylindrical lenses. The chiral microparticles are floating at the interface of air and water in a microwell fabricated using the soft lithography. This configuration offers many possibilities to probe intriguing optical physics, such as spin-orbital interactions, chirality sensing, etc.

These scientists summarize their work as:

"We design the first experiment of chirality assisted optical lateral force on Mie chiral particles (size ~ wavelength) for enantioselective separation. Recent studies about enantioselective separation and chiral particles focus on the very big particles (geometric optics region, size >> wavelength) due to the limit of particle synthesis procedure and existing theories. We demonstrate, for the first time, robust bidirectional sorting of Mie chiral particles, and the first example of reversible optical lateral forces, which we believe is an essential complement to the community of optics as well as optical manipulations. Our theory studies the dependence of the reversible optical lateral forces with particle size, incident angle, and polarization of light. Compared to previous non-reversal optical lateral force, Mie chiral particles are quite unique and nontrivial that have some intriguing properties. Also, we elaborate the optical lateral force from the perspective of momentum transfer, which is a straightforward way to manifest the optical lateral force.

"Our method is insightful and helpful to the demonstration of extraordinary forces since it rules out the optical gradient forces in conventional optical tweezers. It helps to complement the realm of optical lateral forces in both theory and experiment. The presented technique can be used to contactless monitor the handedness of the chiral particles which exist widely in the drug industry and biomaterials without the testing with chemical or biological methods." Dr. Yuzhi Shi and Prof. Cheng-Wei Qiu added.

Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Polarization Articles:

Metasurface opens world of polarization
Harvard researchers have designed a metasurface that can be continuously tuned from linear to elliptical birefringence, opening up the entire space of polarization control with just one device.
Extraordinary modulation of light polarization with dark plasmons in magnetoplasmonic nanocavities
Enhancing magneto-optical effects is crucial for the size reduction of key photonic devices based on non-reciprocal propagation of light and to enable active nanophotonics.
Lipid signaling from beta cells can potentiate an inflammatory macrophage polarization
The insulin-producing beta cells in the pancreas unwittingly produce a signal that may aid their own demise in Type 1 diabetes, according to a study of the lipid signals that drive macrophage cells in the body to two different phenotypes of activated immune cells.
Laser writing enables practical flat optics and data storage in glass
Femtosecond laser machining has emerged as an attractive technology enabling appications ranging from eye surgery to direct writing in the bulk of transparent materials.
Silver sawtooth creates valley-coherent light for nanophotonics
Scientists at the University of Groningen used a silver sawtooth nanoslit array to produce valley-coherent photoluminescence in two-dimensional tungsten disulfide flakes at room temperature.
Partisan polarization helps Congress pass bills
While political polarization in the United States is the worst it has been in years, new research from Michigan State University and the Max Planck Institute for Demographic Research suggests that having a partisan -- and sometimes divisive -- Congress might be more productive than if bipartisan groups were the norm.
APS tip sheet: Network dynamics of online polarization
Interaction dynamics reveals the mechanisms behind online polarization and social media echo chambers.
Of ants and men: Ant behavior might mirror political polarization
Division of labor and political polarization may be driven by the same processes, say Princeton University computational biologists Chris Tokita and Corina Tarnita.
Simultaneous emission of orthogonal handedness in circular polarization
Both right- and left-handed circularly polarized light were simultaneously generated from a single device, paving the way for novel applications in biosensors and organic LEDs.
Non-volatile control of magnetic anisotropy through change of electric polarization
Researchers at Kanazawa University controlled the magnetic properties of a metal layer through the electrical polarization of a neighboring metal oxide layer.
More Polarization News and Polarization Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at