Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation

May 25, 2020

Light carrying photon momentum can push and pull microparticles through momentum exchange. This momentum exchange progress generates optical forces, either attracts (conventional optical tweezers), pushes (radiation force) or pulls (pulling force) microparticles. A new emerging research interest, optical lateral force which represents the optical force perpendicular to the propagating direction of a non-gradient beam, has attracted much attention. The lateral force can be generated using achiral particles through the conversion of spin and orbital momentum of a circularly polarized beam. It is also predicted that a chiral nanoparticle placed above a surface can generate the lateral force using a plane wave excitation. However, there are few demonstrations of the chirality dependent lateral force, and the particle used in the theoretical prediction are 100 nm which has limited applications. Besides, the theory of optical lateral force on bigger particles (size ~ wavelength) is lacking.

In a new paper published in Light Science & Application, scientists designed an experiment to demonstrate the chirality-dependent optical lateral force. They synthesize microparticles with strong chirality and float them at the interface of air and water. After illuminated with an obliquely incident linearly polarized beam, chiral microparticles with different handedness (left and right) will move to the opposite directions. Interestingly, they find in theory that the optical lateral force could reverse sign with different light polarization and indecent angle, chirality value and particle size. They also developed intriguing models in the perspective of momentum transfer to elaborate this optical lateral force. The reported method and technique will open new avenues for future direct detection and sorting of microparticles with imperceptible chemical differences and inspire the exploration of optical phenomena with light-matter interactions.

The experimental setup is facile, only requiring a s- or p-polarized laser beam and focusing it into an elliptical shape using two cylindrical lenses. The chiral microparticles are floating at the interface of air and water in a microwell fabricated using the soft lithography. This configuration offers many possibilities to probe intriguing optical physics, such as spin-orbital interactions, chirality sensing, etc.

These scientists summarize their work as:

"We design the first experiment of chirality assisted optical lateral force on Mie chiral particles (size ~ wavelength) for enantioselective separation. Recent studies about enantioselective separation and chiral particles focus on the very big particles (geometric optics region, size >> wavelength) due to the limit of particle synthesis procedure and existing theories. We demonstrate, for the first time, robust bidirectional sorting of Mie chiral particles, and the first example of reversible optical lateral forces, which we believe is an essential complement to the community of optics as well as optical manipulations. Our theory studies the dependence of the reversible optical lateral forces with particle size, incident angle, and polarization of light. Compared to previous non-reversal optical lateral force, Mie chiral particles are quite unique and nontrivial that have some intriguing properties. Also, we elaborate the optical lateral force from the perspective of momentum transfer, which is a straightforward way to manifest the optical lateral force.

"Our method is insightful and helpful to the demonstration of extraordinary forces since it rules out the optical gradient forces in conventional optical tweezers. It helps to complement the realm of optical lateral forces in both theory and experiment. The presented technique can be used to contactless monitor the handedness of the chiral particles which exist widely in the drug industry and biomaterials without the testing with chemical or biological methods." Dr. Yuzhi Shi and Prof. Cheng-Wei Qiu added.

Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Polarization Articles from Brightsurf:

Anti-hacking based on the circular polarization direction of light
The Internet of Things (IoT) allowing smart phones, home appliances, drones and self-driving vehicles to exchange digital information in real time requires a powerful security solution, as it can have a direct impact on user safety and assets.

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices.

FAST reveals mystery of fast radio bursts from the universe
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) has revealed some mystery of the fast radio bursts, according to a study published in Nature on Oct.

Graphene detector reveals THz light's polarization
Physicists have created a broadband detector of terahertz radiation based on graphene.

Squaring the circle -- Breaking the symmetry of a sphere to control the polarization of light
Scientists at Tokyo Institute of Technology (Tokyo Tech, Japan) and Institute of Photonic Sciences (ICFO, Spain) develop a method to generate circularly polarized light from the ultimate symmetrical structure: the sphere.

Optical shaping of polarization anisotropy in a laterally-coupled-quantum-dot dimer
Coupled-quantum-dot (CQD) structures are considered to be an important building block in the development of scalable quantum devices.

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
A hemispherical vanadium oxide cluster has a cavity that can accommodate a bromine molecule.

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities
A plasmonic spin-Hall nanograting structure that simultaneously detects both the polarization and phase singularities of the incident beam is reported.

A new theory about political polarization
A new model of opinion formation shows how the extent to which people like or dislike each other affects their political views -- and vice versa.

Twitter posts reveal polarization in Congress on COVID-19
The rapid politicization of the COVID-19 pandemic can be seen in messages members of the US Congress sent about the issue on the social media site Twitter, a new analysis found.

Read More: Polarization News and Polarization Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to