Nav: Home

Title: Two-dimensional MXene as a novel electrode material for next-generation display

May 25, 2020

Researchers in the US and Korea reported the first efficient flexible light-emitting diodes with a two-dimensional titanium carbide MXene as a flexible and transparent electrode. This MXene-based light-emitting diodes (MX-LED) with high efficiency and flexibility have been achieved via precise interface engineering from the synthesis of the material to the application (Advanced Materials,2020, 2000919).

Flexible displays have been developing with a high pace and the global flexible display market has been expanding quickly over the years. Development of flexible transparent conducting electrodes (TCEs) with outstanding flexibility and electrical conductivity is one of the key requirements for the next-generation displays because indium tin oxide (ITO), the conventional TCE, is brittle. Diverse materials such as graphene, conducting polymers and metal nanowires have been suggested but their insufficient electrical conductivity, low work function and complicated electrode fabrication limited their practical use.

MXenes, a new family of two-dimensional materials

MXenes, a new class of two-dimensional materials discovered at Drexel University in 2011, consist of few-atoms-thick layers of transition metal carbides or nitrides. They have shown impressive properties such as metal-like electrical conductivity and tunable surface and electronic properties, offering new possibilities to the various fields of technology. Since their discovery, their use has been explored in a number of areas, such as metal ion batteries, sensors, gas and electrochemical storage, energy devices, catalysts and medicine. MXenes have exhibited potential as flexible electrodes because of their superior flexibility. However, exploration of MXenes in flexible electrodes of optoelectronic devices just started recently because the conventional MXene films do not meet the requirements of work function and conductivity in LEDs and solar cells and can degrade when they are exposed to the acidic water-based hole injection layer (HIL).

MXene for flexible LED application

An international team of scientists from Seoul National University and Drexel University, led by Tae-Woo Lee and Yury Gogotsi focused on the surface and interface modulation of the solution-processed MXene films to make an ideal MXene/HIL system. They tuned the surface of the MXene film to have high work function (WF) by low-temperature vacuum annealing and the HIL is designed to be pH-neutral and be diluted with alcohol, preventing detrimental surface oxidation and degradation of the electrode film. The MXene/HIL system suggested by the team provides advantages to the device efficiency due to efficient injection of holes to the emitting layer by forming a nearly ideal Ohmic contact.

Using the MXene/HIL system, the team fabricated high-efficiency green organic LEDs (OLEDs) exceeding 100 cd/A, which agrees well with the theoretical maximum values and is quite comparable with that of the conventional ITO-based devices. Finally, flexible MXene-LEDs on a plastic substrate show outstanding bending stability while the ITO-LEDs could not stand the bending stress. It is the first report that demonstrates highly efficient OLEDs using a single layer of 2D titanium carbide MXene as a flexible electrode.

This progressive research is published in the prominent journal 'Advanced Materials' (IF: 25.809). The authors explain further: "The results of interface engineered MXene film and the MXene electrode-based flexible organic LEDs show the strong potential of the solution-processed MXene TCE for use in next-generation optoelectronic devices that can be manufactured using a low-cost solution-processing technology."
-end-


Seoul National University

Related Conductivity Articles:

Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.
User research at BESSY II: How new materials increase the efficiency of direct ethanol fuel cells
A group from Brazil and an HZB team have investigated a novel composite membrane for ethanol fuel cells.
Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.
Quantum mechanical simulations of Earth's lower mantle minerals
The theoretical mineral physics group of Ehime University led by Dr.
Heat transport property at the lowermost part of the Earth's mantle
Lattice thermal conductivities of MgSiO3 bridgmanite and postperovskite (PPv) phases under the Earth's deepest mantle conditions were determined by quantum mechanical computer simulations.
Isotopically enriched cubic boron nitride reveals high thermal conductivity
An international team of physicists, materials scientists, and mechanical engineers has confirmed the high thermal conductivity predicted in isotopically enriched cubic boron nitride, the researchers report in the electronic edition of the journal Science. c-BN is particularly challenging to make and it's difficult to measure its thermal conductivity accurately when the value is high.
Scientists make breakthrough in ion-conducting composite membranes
Chinese researchers under the direction of Professors LI Xianfeng and ZHANG Huamin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences recently developed an ultrathin ion-conducting membrane with high selectivity and conductivity that can boost the power of flow batteries.
Solving the thermoelectric 'trade-off' conundrum with metallic carbon nanotubes
Scientists from Tokyo Metropolitan University have used aligned 'metallic' carbon nanotubes to create a device which converts heat to electrical energy (a thermoelectric device) with a higher power output than pure semiconducting carbon nanotubes in random networks.
Sponge-like 2D material with interesting electrical conductivity and magnetic properties
Researchers synthesize a new 2D Metal Organic Framework with an ever-growing list of possible applications.
Graphene substrate improves the conductivity of carbon nanotube network
Scientists at Aalto University, Finland, and the University of Vienna, Austria, have combined graphene and single-walled carbon nanotubes into a transparent hybrid material with conductivity higher than either component exhibits separately.
More Conductivity News and Conductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.