Toxic Protein That Interferes With Brain Signals May Trigger Onset Of Alzheimer's Disease

May 25, 1998

CHICAGO --- Researchers have discovered new, highly toxic proteins that disrupt brain mechanisms for learning and memory and which may set off the progression of Alzheimer's disease.

The globular-shaped proteins, called amyloid beta-derived diffusible ligands (or ADDLs), were identified by a team of neuroscientists at Northwestern University, Evanston Northwestern Healthcare and the University of Southern California, Los Angeles.

A report on the group's findings appears in the May 26 issue of the Proceedings of the National Academy of Sciences.

ADDLs are a surprising new form of the amyloid beta protein. Amyloid beta has been known for years to accumulate as enormous fibers in Alzheimer's afflicted brains. A long-standing hypothesis has been that these fibers attack nerve cells and cause Alzheimer's dementia. These scientists now have found that ADDLs, which are minuscule clumps of amyloid beta only a tiny fraction the size of a fiber, may be more relevant to the disease process.

Their experiments in laboratory specimens found that, even at highly dilute concentrations, ADDLs interfere with long-term potentiation, one of the nerve cell processes that is essential to learning and memory. This dysfunction occurred well in advance of the cellular degeneration considered by many researchers to be the cause of Alzheimer's disease. Cell death, when it did occur, was most evident in the hippocampus, the brain's "storage bin" for short-term memory, said William L. Klein, senior author on this study. Klein is a professor of neurobiology and physiology and of neurology at Northwestern.

"Our work suggests that corruption of such signaling by ADDLs may account for the loss of synaptic memory formation at the early stages of Alzheimer's disease and for the nerve cell death and profound dementia at end stages of the disease," he said.

ADDLs apparently form when certain inflammatory proteins are present in the brain. One such protein, clusterin (or Apo J), is elevated in the brains of patients with Alzheimer's disease. Earlier research conducted by Grant A. Krafft and Caleb E. Finch, two of the investigators on this study, found that clusterin could make amyloid protein toxic but prevented formation of fibrils. Based on these results, the collaborative group subsequently found that a combination of amyloid and clusterin results in the formation of ADDLs.

Another of the researchers, Mary P. Lambert, developed tests to determine how ADDLs destroy nerve cells. These included use of a genetically modified animal which showed that ADDLs act through their receptors to activate a protein known as Fyn, a reaction that ultimately results in cell death. Neurons in the brains of people with Alzheimer's disease have been found to have elevated amounts of Fyn.

In brain slices of animals lacking the Fyn gene, ADDL-evoked cell death did not occur, showing that the mechanism through which ADDLs exert their toxicity is blocked by removal of Fyn. Furthermore, blocking ADDL binding sites also afforded neurons protection against the toxic effects of ADDLs.

Finch said the group's results are significant because: "Dogma holds that fibrils cause Alzheimer's disease. But we have found that even without fibrils, there can be devastating consequences for nerve cells," he said.

Krafft added, "While it is generally believed that Alzheimer's disease symptoms are due to nerve cell death, we were able to block memory mechanisms without nerve cell death. The implications of this work are that, if Alzheimer's disease symptoms are caught at early stages, they potentially could be reversed."

Grant A. Krafft is director of research development at Evanston Northwestern Heathcare in Evanston, Ill., and a research professor of neurology at Northwestern University Medical School. Caleb E. Finch is a professor of neurogerontology at the University of Southern California, Los Angeles. Mary P. Lambert is a senior research associate in neurobiology and physiology at Northwestern University. Other collaborators on this study included Barbara Trommer, M.D., an assistant professor of neurobiology and physiology at the Medical School and a pediatric neurologist at Evanston Northwestern Healthcare; A. K. Barlow, B. A. Chromy, R. Freed, M. Liosatos and C. Zhang, department of neurobiology and physiology, Northwestern University; C. Edwards, Evanston Hospital Research Division, Evanston, Ill.; and T. E. Morgan, I. Rozovsky and P. Wals, Andrus Gerontology Center, department of biological sciences, University of Southern California, Los Angeles.

This study was supported by grants from the National Institutes of Health (Klein, Krafft and Finch) and from the Boothroyd and Buehler Foundations and the Alzheimer's Association (Klein).


(Editor's note: William Klein can be reached at (847) 491-5510 or e-mail at

Northwestern News on the World Wide Web:

CONTACT: Elizabeth Crown at (312) 503-8928 or e-mail at
Broadcast Contact: Stephanie Clemson at (847) 491-4888 or e-mail at

Northwestern University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to