Nav: Home

Cocaine addiction, craving and relapse

May 26, 2015

One of the major challenges of cocaine addiction is the high rate of relapse after periods of withdrawal and abstinence. But new research reveals that changes in our DNA during drug withdrawal may offer promising ways of developing more effective treatments for addiction.

Withdrawal from drug use results in reprogramming of the genes in the brain that lead to addictive personality, say researchers from McGill University and Bar Ilan University in a new study published in the Journal of Neuroscience.

"We inherit our genes from our parents and these genes remain fixed throughout our life and are passed on to our children; we can do very little to change adverse genetics changes that we inherit," says Moshe Szyf, a professor in the Faculty of Medicine at McGill, "In contrast, epigenetic marks such as DNA methylation act as switches and dimmers of genes- they can be switched on, off, or dimmed - by epigenetic drugs inhibiting DNA methylation and removing methyl marks from these genes."

The researchers wanted to see if they could stop addictive behavior by influencing the epigenetic markers that were triggered by withdrawal using epigenetic drugs such as the DNA methylation inhibitor, RG108.

Rat model of addiction

The team used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine which was cued by a specific light or sound. This drug craving or "addictive" behavior was tested after either 1 day or 30 days of withdrawal from cocaine. Following the long withdrawal, the rats developed an intense drug seeking behavior when exposed to the cue. It was after a lengthy period without the drugs that the epigenetic changes were most evident.

Revolutionary approach to treating drug addiction

"We discovered that injecting the drug RG108 just before the animals were exposed to the light cue after the long withdrawal not only stopped the addictive behavior of the animals, it also lasted for a longer period. This suggests that a single treatment with RG108 could reverse or perhaps cure drug addiction." adds Szyf.

Period of withdrawal is key

"Surprisingly, we discovered that the biggest changes in DNA methylation occurred not during the exposure to the drug but during withdrawal," says co-author Gal Yadid, of Bar Ilan University, "During this period of withdrawal, hundreds of genes changed their state of DNA methylation including genes that were known before to be involved in addiction".

This research may point to new avenues for treatment of addiction in humans.

Current treatments might aggravate rather than inhibit addiction

"The mainstay of current approaches to treating addiction might actually aggravate it," says Yadid. "Our research suggests that because the changes in addiction involve numerous genes, our current approaches will continue to fail if we target one or few targets in the brain, but more research is needed to confirm if these new avenues hold promise."
-end-
The study was funded by a grant from the Canadian Institute of Health Research, grants from Ministere du Developpement Economique, de l'Innovation et de l'Exportation (MDEIE) program of the government of Quebec and the Israel Anti-Drug Authority.

"Role of DNA Methylation in the Nucleus Accumbens in Incubation of Cocaine Craving" Renaud Massart, Royi Barnea, Yahav Dikshtein, Matthew Suderman, Oren Meir, Michael Hallett, Pamela Kennedy and Eric J. Nestler. Moshe Szyf, Gal Yadid, Journal of Neuroscience

McGill University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...