Nav: Home

A critical inheritance from dad ensures healthy embryos

May 26, 2016

An important feature for life is what embryos receive from mom and dad upon fertilization. Oddly enough, centrioles, the structures responsible for cell division and flagella movement, are given by the paternal gamete. How oocytes, the maternal gametes, lose centrioles and the importance of doing so for female fertility has been an enigma since the 1930s. A team led by Mónica Bettencourt-Dias at the Instituto Gulbenkian de Ciência (IGC; Portugal) have cracked this mystery, shedding light upon a critical mechanism whose deregulation leads to infertility, and that is important for the working of other cell types.

The results of this study, now published in the prestigious scientific journal Science, show that centrioles normally have a coating that protects them and that this coat is lost inside the oocyte, hence centrioles are eliminated. They further show that if the centrioles are not eliminated, those mothers are sterile.

"The mechanism by which centrioles disappear in the egg in all animals remained elusive and paradoxical, as these structures were thought to be exceptionally stable" says Mónica Bettencourt-Dias. Using as an experimental tool to study this process the fruit fly (Drosophila melanogaster), Ana Marques and Inês Bento from the team saw that centrioles are eliminated step-wise: first they lose their coating, then centrioles disappear. The researchers observed that the loss of centriole coating is triggered by the loss of an important centriole regulator, the polo kinase protein. "Strikingly, adding back polo was sufficient to maintain coating, and to avoid maternal centriole elimination, something no-one was able to do before!" says Ana Marques.

The relevance for sexual reproduction of losing centrioles in the oocyte was also not known. "When we artificially retained maternal centrioles, the resulting embryo had excessive centrioles (both maternal and paternal) resulting in abnormal divisions and aborted development, showing that centriole elimination is critical for sexual reproduction" says Inês Bento. "The regulation of centriole stability in other tissues, is likely to be critical for normal development and regeneration; this is something we are now pursuing", adds Mónica Bettencourt-Dias.

-end-

This study was conducted at Instituto Gulbenkian de Ciência, and funded by European Molecular Biology Organization (EMBO), European Research Council (ERC) and Fundação para a Ciência e a Tecnologia (FCT; Portugal).

Instituto Gulbenkian de Ciencia
Discovery of a novel chromosome segregation mechanism during cell division
When cells divide, chromosomes need to be evenly segregated. This equal distribution is important to accurately pass genetic information to the next generation.
Researchers identify earliest known protein needed for cell division
Researchers from three US universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.
Study finds new target for controlling cell division
Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.
Calcium aids chromosome condensation prior to cell division
Research led by the University of Osaka found that calcium ions help maintain the structure of chromosomes during mitosis by promoting their condensation.
Live cell imaging of asymmetric cell division in fertilized plant cells
Plant biologists have succeeded for the first time in visualizing how egg cells in plants divides unequally (asymmetric cell division) after being fertilized.
Three rings stop cell division in plants
Arising from a collaboration between plant and animal biologists, and organic chemists at ITbM, Nagoya University, the group succeeded in developing a new compound, a triarylmethane that can rapidly inhibit cell division in plants.
Strong, steady forces at work during cell division
Biologists who study the mechanics of cell division have for years disagreed about how much force is at work when the cell's molecular engines are lining chromosomes up in the cell, preparing to winch copies to opposite poles across a bridge-like structure called the kinetochore to form two new cells.
Unconventional cell division in the Caribbean Sea
Bacteria are immortal as long as they keep dividing. For decades it has been assumed that a continuous, proteinaceous ring is necessary to drive the division of most microorganisms.
Differing duration of brain stem cell division
Stem cells in the developing human brain take more time to arrange the chromosomes before distribution than stem cells of great apes.
Cell division and inflammatory disease link revealed
A ground-breaking study by University of Manchester and Liverpool scientists and published in the journal eLife has identified a new link between inflammation and cell division.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.