Nav: Home

New study uncovers mechanisms underlying how diabetes damages the heart

May 26, 2016

Cardiac complications are the number one cause of death among diabetics. Now a team of scientists has uncovered a molecular mechanism involved in a common form of heart damage found in people with diabetes.

A research team from The University of Texas Medical Branch at Galveston in collaboration with Baylor College of Medicine, University of California San Diego and the University of Texas at Dallas have published their findings the journal Cell Reports.

People with diabetes have a two to five time higher risk of developing cardiovascular diseases. For decades physicians have noticed unhealthy changes in the hearts of diabetics called diabetic cardiomyopathy, which is a disorder of the heart muscle that can lead to heart failure.

The molecular mechanisms responsible for this cardiac disorder are poorly understood, although they are key to revealing new targets for the discovery of better treatments and development of more accurate diagnostics.

RNA provides the blueprint for making the protein building blocks of cells. The RNA is cut or spliced to generate mRNA used to build proteins. RNA splicing mistakes are associated with many human diseases because they lead to production of the wrong or harmful proteins.

The research team has previously shown that splicing is incorrectly regulated and levels of the splicing regulator RBFOX2 are elevated in diabetic heart tissue. The current study sought to further investigate how RBFOX2 regulation contributes to splicing defects seen in diabetic hearts and the consequences of splicing changes on cardiac function.

The UTMB-led study found that RBFOX2 binds to 73 percent of the RNA that are mis-spliced in diabetic heart tissues. This alternative splicing was found to impair normal gene expression patterns in the heart, especially genes important for molecular metabolism, programmed cell death, protein trafficking and calcium handling in heart muscle tissue. Calcium balance is important in regulating a heartbeat.

"We discovered that RBFOX2 function is disrupted in diabetic hearts before cardiac complications are noticeable and RBFOX2 dysregulation contributes to abnormal calcium signaling in the heart," said N. Muge Kuyumcu-Martinez, lead author and UTMB assistant professor in the department of biochemistry and molecular biology. "Identifying RBFOX2 as an important contributor to diabetic complications and learning how it is dysregulated may allow us to develop new tools to diagnose, prevent or treat diabetic cardiomyopathy in the future."

-end-

Other authors include UTMB's Curtis A. Nutter, Elizabeth Jaworski, Sunil K. Verma, Ismail Abass, Talha Ijaz, Allan Brasier and Nisha J. Garg; Vaibhav Deshmukh, Qiongling Wang and Xander H. Wehrens from Baylor College of Medicine; Olga Botvinnik and Gene Yeo from the University of California San Diego and Mario Lozano from the University of Texas at Dallas.

University of Texas Medical Branch at Galveston
The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.