Nav: Home

Penn State DNA ladders: Inexpensive molecular rulers for DNA research

May 26, 2017

New, license-free DNA ladders will allow researchers to estimate the size of fragments of DNA for a fraction of the cost of currently available methods. A research team of undergraduate students led by Penn State Professor of Biochemistry and Molecular Biology Song Tan and former undergraduate student Ryan C. Henrici developed two plasmids -- a circular form of DNA -- that can be cut by DNA scissors known as restriction enzymes to create the DNA ladders. The ladders can be used to estimate the size of DNA fragments between about 50 and 5,000 base pairs in length. A paper describing the research appears online May 26, 2017 in the journal Scientific Reports.

"DNA ladders, also known as DNA molecular weight markers, are among the most commonly used reagents in molecular biology research," said Tan. "They are used in any application that requires gel electrophoresis -- a technique that separates fragments of DNA by their size. We would like to offer these plasmids to the research community as a means to produce high quality DNA molecular weight markers at a low cost."

The research team created two plasmids, pPSU1 and pPSU2, that together produce DNA ladders in increments of either 100 or 1,000 base pairs, depending on which restriction enzyme is used. Researchers can easily produce in their own laboratories enough of the two ladders for 1,000 uses for under $10. In contrast, commercially available DNA ladders cost between $250 and $500 for the same amount. Additionally, unlike many currently available DNA ladders, the 100-base-pair ladders work appropriately on both agarose and polyacrylamide gels, two types commonly used in molecular biology.

"We are also excited about the possibility that the pPSU plasmids may be used around the world to further research and enhance science education in classroom laboratories," said Henrici. "This technology produces DNA ladders at less than a penny per use, a fraction of the cost of using commercially available DNA ladders."

The pPSU1 and pPSU2 plasmids used to produce the Penn State DNA ladders will be available without licensing restrictions to nonprofit academic users through the Addgene and DNASU plasmid repositories.
-end-
In addition to Tan and Henrici, the research team includes Turner J. Pecen and James L. Johnston, undergraduate students in the Schreyer Honors College at Penn State at the time the research was performed. The research is supported by the U.S. National Institutes of Health - National Institute of General Medical and the Penn State Eberly College of Science.

CONTACT:

Song Tan: sxt30@psu.edu, 814-865-3355
Barbara K. Kennedy (PIO): BarbaraKennedy@psu.edu, 814-863-4682

IMAGES:

https://psu.box.com/v/Tan5-2017

CAPTIONS:

Figure 1: Schematic of pPSU1 and pPSU2 plasmids. The 1000-base-pair (1 kb) ladder is made by cutting the two plasmids with the restriction enzyme, EcoRV. The 100-base-pair (bp) ladder is made by cutting the plasmids with PstI.

Figure 2: Gel electrophoresis images of the two Penn State DNA ladders created by cutting the pPSU1 and pPSU2 plasmids with restriction enzymes. The 100-base-pair (bp) ladder is designed to be used with both agarose and acrylamide gels.

Penn State

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past
by David Reich (Author)

The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google
by Scott Galloway (Author)

DNA Science: A First Course, Second Edition
by David Micklos (Author), Greg A. Freyer (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

Cosmic Serpent: DNA and the Origins of Knowledge
by Jeremy Narby (Author)

DNA: The Secret of Life
by James D. Watson (Author), Andrew Berry (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

Genetics For Dummies
by Tara Rodden Robinson (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...