Nav: Home

Marine species distribution shifts will continue under ocean warming

May 26, 2017

Scientists using a high-resolution global climate model and historical observations of species distributions on the Northeast U.S. Shelf have found that commercially important species will continue to shift their distribution as ocean waters warm two to three times faster than the global average through the end of this century. Projected increases in surface to bottom waters of 6.6 to 9 degrees F (3.7 to 5.0 degrees Celsius) from current conditions are expected.

The findings, reported in Progress in Oceanography, suggest ocean temperature will continue to play a major role in where commercially and recreationally important species will find suitable habitat. Sea surface temperatures in the Gulf of Maine have warmed faster than 99 percent of the global ocean over the past decade. Northward shifts of many species are already happening, with major changes expected in the complex of species occurring in different regions on the shelf, and shifts from one management jurisdiction to another. These changes will directly affect fishing communities, as species now landed at those ports move out of range, and new species move in.

"Species that are currently found in the Mid-Atlantic Bight and on Georges Bank may have enough suitable habitat in the future because they can shift northward as temperatures increase," said lead author Kristin Kleisner, formerly of the Northeast Fisheries Science Center (NEFSC)'s Ecosystems Dynamics and Assessment Branch and now a senior scientist at the Environmental Defense Fund. "Species concentrated in the Gulf of Maine, where species have shifted to deeper water rather than northward, may be more likely to experience a significant decline in suitable habitat and move out of the region altogether."

The researchers used bottom trawl survey data collected between 1968 and 2013 on the shelf to estimate niches for 58 demersal and pelagic species. A high-resolution global climate model known as CM2.6, developed by the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, New Jersey, was used to generate projections of future surface and bottom ocean temperatures across the region. The future temperatures were then used to project where marine species would find suitable habitat.

"Similar studies in the past used a coarse model with a roughly 100-kilometer or 62-mile ocean resolution, while the new model has a 10-kilometer or 6.2-mile ocean resolution, making the simulation of oceanic and atmospheric features much more accurate," said Vincent Saba of the NEFSC's Ecosystems Dynamics and Assessment Branch, who works at GFDL and is a co-author of the study.

Saba has compared the difference between the coarse model and the new high-resolution model as being similar to the difference between an old standard definition television set and today's ultra high definition screens.

Researchers looked at species distributions in spring and fall in the Gulf of Maine on the northern part of the Northeast Shelf and those on the southern end, from Georges Bank to the Mid-Atlantic Bight. They also examined what the shifting distributions might mean for fishing communities by looking at the current and potential future distance between the main fishing port in each state and the center of the distribution of suitable thermal area for the top-landed species by weight in each state.

Key northern species including Acadian redfish, American plaice, Atlantic cod, haddock, and thorny skate may lose thermal habitat, while spiny dogfish and American lobster may gain. Projected ocean warming in the Gulf of Maine may create beneficial conditions for American lobster populations, and they may continue to be accessible to fishing ports in the region.

In contrast, species like monkfish, witch flounder, white hake and sea scallops may remain accessible to major local fishing ports but could experience strong declines in habitat due to ocean warming. Atlantic cod, which is at the southern end of its range, may find suitable thermal habitat off the shelf entirely or in more northern waters in Canada.

In states south of New York, the distance to the centers of species distribution from ports may increase for some species, including summer flounder, which is currently the third most-landed species in Virginia. In North Carolina, the distance from ports to the center of distribution may increase for all six of the top landed species. Among the top six species landed in Virginia, only Atlantic croaker and striped bass are projected to have more suitable habitat.

"Warming waters may have a positive effect on smooth dogfish, Atlantic croaker, and striped bass in the southern part of the Northeast Shelf, with increases in suitable habitat in terms of area and species abundance, " Kleisner said. "But these species are also shifting northward and the bulk of the biomass of some species may be further from the main ports in southern states, making it more costly for fishermen to access these species. Conversely, as species move into new regions, fishermen may have new opportunities."

The projections indicate that as species shift from one management jurisdiction to another, or span state and federal jurisdictions, increased collaboration among management groups will be needed to set quotas and establish allocations.

"These changes will depend on the pace of climate change and on the ability of species to adapt or shift elsewhere to maintain a preferred habitat," said Kleisner. "We did not examine fishing pressure, species interactions and other factors that may influence future distributions. However, given the historical changes observed on the Northeast Shelf over the past five decades and confidence in the projection of continued ocean warming in the region, it is likely there will be major changes within this ecosystem."

"Those changes will result in ecological, economic, social, and natural resource management challenges throughout the region," Kleisner said. "It is important to understand large-scale patterns in these changes so that we can plan for and mitigate adverse effects as much as possible."
-end-


NOAA Northeast Fisheries Science Center

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...