Nav: Home

The first 3D map of the heart's neurons

May 26, 2020

PHILADELPHIA - The normal functioning of our hearts is maintained by our body's control center - the brain - via an intricate network of nerves. When this communication is disrupted, it results in heart disease, including heart attacks, sudden cardiac death and problems in blood supply. As an added layer of safety, the heart has its own 'little brain', called the intracardiac nervous system (ICN) to monitor and correct any local disturbances in communication. The ICN is essential in supporting heart health and can even protect cardiac muscle during a heart attack. But it's not clear how exactly the ICN carries out these roles, because the organization of the neurons that make up the ICN are poorly understood; we don't know where they are located in the heart, how they are connected to each other, and what their molecular properties are.

In a groundbreaking study published in iScience on May 26th, researchers at Thomas Jefferson University and their collaborators have been able to answer these questions in unprecedented detail.

"The ICN represents a big void in our understanding that falls between neurology and cardiology," says co-senior author James Schwaber, PhD, director of the Daniel Baugh Institute for Functional Genomics and Computational Biology (DBI) and co-senior author of the study. "Our goal was to bridge that gap by providing an anatomical framework of the ICN."

"The only other organ for which such a detailed high-resolution 3D map exists is the brain," says co-senior author Raj Vadigepalli, PhD, Professor of Pathology, Cell Biology and Anatomy. "In effect what we have created is the first comprehensive roadmap of the heart's nervous system that can be referenced by other researchers for a range of questions about the function, physiology, and connectivity of different neurons in the ICN."

The study drew on technologies and expertise from different research groups (from Jefferson and University of Central Florida) and industry partners (Strateos and MBF Bioscience), eventually creating a dual-approach pipeline. One approach involved a novel imaging technique called Knife-Edge Scanning Microscopy (KSEM) that allowed the researchers to build a precise 3D model of the entire rodent heart; it is the first use of this technology for cardiac research. The second approach used a technique called laser capture microdissection to sample single neurons for gene expression analysis, as well as to map their individual positions within the 3D structure of the heart.

"Because this hasn't been done before, we were trouble-shooting the protocol as we went along," says co-author Sirisha Achanta, Lab Manager at the DBI. "The heart, unlike the brain, is not symmetrical, so we had to figure out ways to maintain consistency across each heart that we imaged."

The 3D map revealed hitherto unknown complexity of the ICN. The researchers found that the neurons that make up the ICN are found in a coherent band of clusters on the base (top) of the heart, where the heart's veins and arteries enter and leave, but also extend down the length of the left atrium on the back of the heart. They're positioned close to certain key heart structures like the sinoatrial node.

"We know the sinoatrial atrial node is important in creating the heart rate or pace," says co-author Jonathan Gorky, a recently graduated MD/PhD student and now a resident at the Massachusetts General Hospital. "Seeing the clustering of neurons around it was something we had always suspected but had never known for sure. It was really interesting to see the physical evidence of the ICN's function and the precise distribution of the neurons in relationship to the anatomical structures of the heart."

The gene expression analysis of individual neurons also pointed to previously unknown diversity of molecular identities or phenotypes. "We found that there are several different types of neuromodulators and receptors present," explains Dr. Vadigepalli. "This means that we don't just have neurons in the heart that shut on and off activity, but also those that can fine-tune the activity of the ICN."

When comparing male and female rat hearts, the researchers also found sex-specific differences in the way neurons were organized, both spatially and by their gene expression. Co-authors Alison Moss, PhD Candidate in Biochemistry and Molecular Pharmacology, and Shaina Robbins, a senior research assistant, are pursuing further analyses based on these findings. "It could help us explain some of the differences in heart disease in men and women," says Moss. "We're now trying to create a 3D model of the intrinsic nervous system of the pig heart, which is even more anatomically comparable to the human heart, to explore those questions further."

This project is part of a NIH research program called 'Stimulating Peripheral Activity to Relieve Conditions', or SPARC, which aims to promote development of therapeutic devices that modulate electrical activity in nerves to improve organ function. "Around thirty years ago, there were studies showing peripheral nerves like the vagus nerve were critical for the health of organs like the heart and stimulating them could even remediate disease" explains Dr. Schwaber. "But those studies were not able to tell us what amount, frequency and location of stimulation is beneficial or harmful."

"Now that we know where neurons are located in relation to heart structures, we can ask questions like - does stimulating in one location, or even selectively stimulating specific neurons make a difference?" says Dr. Vadigepalli.

The researchers are delighted that the pipeline they've created is now being used by other groups in the SPARC research program. "Our protocol uses everyday lab materials and techniques," says Achanta. "It is highly reproducible and is available now for other organ systems to map not just neurons, but other micro-structures."

"Eventually the hope is to create a 3D map for the human heart, both in health and disease," says Dr. Schwaber. "We've created the foundation for an endless possibility of future studies."
-end-
This study was supported by the NIH SPARC Program (Grant OT2 OD023848) and NHLBI (Grant U01HL133360). The investigators' efforts were also supported by the Department of Pathology and Jefferson Provost's Thematic Research Program initiative to obtain the critical equipment for laser capture microdissection and high-throughput gene expression analysis needed to obtain the unique spatially-tracked gene expression data sets. The authors report no conflict of interest.

By Karuna Meda

Article Reference: Sirisha Achanta, Jonathan Gorky, Clara Leung, Alison Moss, Shaina Robbins, Leonard Eisenman, Jin Chen, Susan Tappan, Maci Heal, Navid Farahani, Todd Huffman, Steve England, Zixi (Jack) Cheng, Rajanikanth Vadigepalli, James S. Schwaber, "A Comprehensive Integrated Anatomical And Molecular Atlas Of Rodent Intrinsic Cardiac Nervous System", DOI: 10.1016/j.isci.2020.101140, iScience, 2020

Media Contacts: Karuna Meda, 267-624-4792, karuna.meda@jefferson.edu.

Thomas Jefferson University

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.