More effective human antibodies possible with chicken cells

May 26, 2020

Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories. Researchers refer to their technique as the human ADLib system, short for autonomously diversifying libraries. The technique automatically builds vast numbers, or libraries, of diverse antibodies using chicken immune system cells' natural method for shuffling their genes.

Often shaped like the letter Y, antibodies are produced by the immune system to fight infections and prevent re-infection. Small portions of that Y shape are highly variable. Antibodies use their unique shape to form a perfect molecular hug with specific antigens, molecules on the surface of the cause of an infection. To effectively eliminate an infection, antibodies must recognize, attach and stay attached to an antigen.

"Our ADLib system can generate human antibodies against various antigens faster than existing methods," said Hidetaka Seo, a project researcher at the University of Tokyo and first author of the recently published scientific paper.

In standard techniques, individual antibodies are first identified and then produced through a slow, multistep process involving bacteria, animal cells, or sometimes isolating antibodies from the blood of vaccinated or infected animals, and then modifying those animal antibodies for safe human use.

The first ADLib system was developed in 2005 by some members of the current research team, who at the time were working at the RIKEN research institute outside of Tokyo. The original ADLib system produced chicken antibodies using chicken immune system cells. In the years since, other researchers have generated human antibodies in whole live chickens.

"We had the idea for the human ADLib system at that time, but the technology was very difficult to develop," said Professor Kunihiro Ohta, a co-author of the recent research paper, who led the original ADLib research group at RIKEN and is currently dean of the Graduate School of Arts and Sciences at the University of Tokyo.

"This is the first case of human gene recombination sequences capable of providing practical antibody libraries being developed using avian cells grown in a laboratory," said Seo.

To develop the human ADLib system, researchers first inserted human genes to replace the chicken immune cells' antibody genes and the surrounding units of DNA known as pseudogenes. The cells then grow in a dish and multiply for several weeks, generating antibody genes of various new combinations. This random antibody-generator quality of the ADLib system leads to many useless antibodies, but it may generate more efficient antibodies than the "built-for-purpose" antibodies that a human or animal immune system naturally produces during an infection.

Separately, researchers coat tiny magnetic beads with antigens of interest. Finally, the chicken cells are burst open and the contents are washed over the magnetic beads. Any antibodies that stick to the antigen-coated magnetic beads are added to the antibody library. After isolating antibodies on the magnetic beads, the entire process of identifying them and checking their specificity can be completed within about 10 days. Researchers state this is much faster than conventional antibody generation methods, which can take a few months.

Many variations of antibodies might be able to bind an antigen, but staying attached is essential for proper immune function. The human ADLib system includes a second phase to strengthen antibodies' ability to attach and stay attached to their antigens, a process called binding affinity maturation.

Although binding affinity maturation is laborious in conventional methods, the human ADLib system provides a simple and effective method. Chicken cells with the desired antibodies are grown in the lab for another short period to further moderately diversify the antibody genes. Antibodies with stronger binding affinities to the antigen can be isolated from this second library.

Researchers have successfully achieved about a hundredfold improvement of the binding affinity.

Researchers have so far tested the human ADLib technique to find antibodies similar to those currently used to treat certain types of cancer.

"In the future, antibodies for therapeutics to overcome currently unmet medical needs could be generated by using the human ADLib system," said Yukoh Nakazaki, a co-author of the recent research paper and head of the research labs at Chiome Bioscience Inc. Chiome is improving this technology in partnership with the University of Tokyo.

The ADLib system is not limited to generating antibodies.

"If we replace the relevant chicken genes and pseudogenes with any other gene of interest, we could generate libraries of other proteins for agricultural, veterinary, or medical uses," said Seo.
This research by a team at the University of Tokyo and Chiome Bioscience Inc. was recently published in the scientific journal Cellular & Molecular Immunology.

Research Article

Hidetaka Seo, Hitomi Masuda, Kenjiro Asagoshi, Tomoaki Uchiki, Shigehisa Kawata, Goh Sasaki, Takashi Yabuki, Shunsuke Miyai, Naoki Takahashi, Shu-ichi Hashimoto, Atsushi Sawada, Aki Takaiwa, Chika Koyama, Kanako Tamai, Kohei Kurosawa, Ke-Yi Lin, Kunihiro Ohta, and Yukoh Nakazaki. 26 May 2020. Streamlined human antibody generation and optimization by exploiting designed immunoglobulin loci in B cell line. Cellular and Molecular Immunology. DOI: 10.1038/s41423-020-0440-9

Related Links

Ohta Lab:

Department of Life Sciences:

Graduate School of Arts and Sciences:

Chiome Bioscience Inc.:

Research contact

Project Researcher Hidetaka Seo, Ph.D.
Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-0041
Tel: +81-3-5465-7653

Investor Relations
Chiome Bioscience Inc., Sumitomo Fudosan Nishi-shinjuku Bldg.No.6, 3-12-1 4Honmachi, Shibuya-ku, Tokyo 151-0071 Japan
Tel: +81-3-6383-3746 4E-mail:

Press officer contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 133-8654, JAPAN
Tel: +81-080-9707-8178

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at or follow us on Twitter at @UTokyo_News_en.

About Chiome Bioscience Inc.


New Energy and Industrial Technology Development Organization (NEDO) Core Research for Evolutional Science and Technology (CREST)

University of Tokyo

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to