Nav: Home

Exchange of arms between chromosomes using molecular scissors

May 26, 2020



The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants. The research teams of Professor Holger Puchta of Karlsruhe Institute of Technology (KIT) and Professor Andreas Houben from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben have now been the first to not only exchange single genes, but to recombine entire chromosomes with the CRISPR/Cas technology. In this way, desired properties can be combined in crops. Their work using the thale cress model plant is reported in Nature Plants. (DOI: https://doi.org/10.1038/s41477-020-0663-x External Link)

For thousands of years, humans have taken advantage of the fact that the genetic material of organisms changes by evolution. They cultivate crops that produce high yields, are aromatic or resistant against diseases, pests, and extreme climatic conditions. For this purpose, they choose plants with various favorable properties and crossbreed them. This approach, however, is very time-consuming. Moreover, it is impossible to prevent disadvantageous traits from entering the plants.

Molecular biologist Professor Holger Puchta studies how plants can be cultivated more quickly and more precisely. For his CRISBREED project, he received an Advanced Grant of the European Research Council (ERC) in the amount of EUR 2.5 million. Holger Puchta is considered a pioneer of genome editing. He uses molecular scissors to specifically modify the DNA (deoxyribonucleic acid) that carries the genetic information in crops. With the help of this CRISPR/Cas technology, genes can be removed, inserted, or exchanged easily. CRISPR/Cas stands for a certain section on the DNA (CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats) and an enzyme (Cas) that recognizes this section and cuts the DNA precisely at this point. Crops produced by genome editing do not contain any DNA, which is why they are not to be equated with classical genetically modified organisms.

First Exchange of Arms between Chromosomes


Within CRISBREED, researchers of the Chair for Molecular Biology and Biochemistry of KIT's Botanical Institute headed by Professor Holger Puchta, in cooperation with Professor Andreas Houben from IPK, Gatersleben, have now achieved first decisive progress in using the molecular CRISPR/Cas scissors: For the first time, they have exchanged arms between chromosomes of the thale cress model plant (Arabidopsis thaliana) with the help of the Cas9 protein originating from the Staphylococcus aureus bacterium. "The genome consists of a certain number of chromosomes, on which the individual genes are arranged in fixed order," Puchta explains. "So far, CRISPR/Cas has enabled modifications of single genes only. Now, we can modify and recombine entire chromosomes." These novel chromosomes are then heritable.

The findings presented in Nature Plants promise to result in major advantages for crop cultivation: It is generally difficult to combine positive properties and eliminate negative properties at the same time, because the decisive genes often are arranged in very close proximity on the same chromosome and transmitted together. By the exchange of arms between chromosomes, these properties can now be separated. "We now have the possibility to specifically control the modification of chromosomes and to strengthen or loosen the links between properties," Puchta explains. "This controlled restructuring of the genome will revolutionize future crop cultivation."

Original Publication:


Natalja Beying, Carla Schmidt, Michael Pacher, Andreas Houben, and Holger Puchta: CRISPR/Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nature Plants, 2020. (DOI: https://doi.org/10.1038/s41477-020-0663-x External Link)

Abstract at https://www.nature.com/articles/s41477-020-0663-x External Link

Being "The Research University in the Helmholtz Association", KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

Karlsruher Institut für Technologie (KIT)

Related Genome Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.