New 5G switch provides 50 times more energy efficiency than currently exists

May 26, 2020

RESEARCH TRIANGLE PARK, N.C. -- As 5G hits the market, new U.S. Army-funded research has developed a radio-frequency switch that is more than 50 times more energy efficient than what is used today.

With funding from the Army Research Office, an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, researchers at The University of Texas at Austin and the University of Lille in France, have built a new component that will more efficiently allow access to the highest 5G frequencies, in a way that increases devices' battery life and speeds up how quickly users can do things like stream HD media.

Smartphones are loaded with switches that perform a number of duties. One major task is jumping back and forth between different networks and spectrum frequencies: 4G, WiFi, LTE, Bluetooth, etc. The current radio-frequency switches that perform this task are always running, consuming precious processing power and battery life.

"Radio-frequency switches are pervasive in military communication, connectivity and radar systems," said Dr. Pani Varanasi, division chief, materials science program at ARO. "These new switches could provide large performance advantage compared to existing components and can enable longer battery life for mobile communication, and advanced reconfigurable systems."

The journal Nature Electronics published the research team's findings.

"It has become clear that the existing switches consume significant amounts of power, and that power consumed is useless power," said Dr. Deji Akinwande, a professor in the Cockrell School of Engineering's Department of Electrical and Computer Engineering who led the research. "The switch we have developed can transmit an HDTV stream at a 100GHz frequency, and that is an achievement in broadband switch technology."

The new switches stay off, saving battery life for other processes, unless they are actively helping a device jump between networks. They have also shown the ability to transmit data well above the baseline for 5G-level speeds.

Prior researchers have found success on the low end of the 5G spectrum - where speeds are slower but data can travel longer distances. This is the first switch that can function across the spectrum from the low-end gigahertz frequencies to high-end terahertz frequencies that could someday be key to the development of 6G.

The team's switches use the nanomaterial hexagonal boron nitride, a rapidly emerging nanomaterial from the same family as graphene. The structure of the switch involves a single layer of boron and nitrogen atoms in a honeycomb pattern sandwiched between a pair of gold electrodes. Hexagonal boron nitride is the thinnest known insulator with a thickness of 0.33 nanometers.

The impact of these switches extends beyond smartphones. Satellite systems, smart radios, reconfigurable communications, and Internet of Things, are all examples of potential uses for the switches. In addition, these switches can be realized on flexible substrates making them suitable for Soldier wearable radios and communication systems that can benefit from the improved energy efficiency for longer battery life with faster data speeds as well as other defense technologies.

"This will be very useful for radio and radar technology," Akinwande said.

This research spun out of a previous project that created the thinnest memory device, also using hBN. Akinwande said sponsors encouraged the researchers to find other uses for the material, and that led them to pivot to RF switches.
-end-
In addition to the U.S. Army, support through a Presidential Early Career Award for Scientists and Engineers, the U.S. Office of Naval Research and The National Science Foundation's Engineering Research Center funded the research. The Texas Nanofabrication Facility partly fabricated the switch and Grolltex, Inc., provided hBN samples.

CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command's core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more lethal to win the nation's wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

U.S. Army Research Laboratory

Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.