Brookhaven Lab & Battelle collaborate on research that may lead to novel anti-microbial drugs

May 27, 2003

UPTON, NY -- The U.S. Department of Energy's Brookhaven National Laboratory and Battelle of Columbus, Ohio, have joined together in a Cooperative Research and Development Agreement (CRADA) to determine the structures of microbial proteins, research that may lead to the design of novel anti-microbial drugs. These drugs would be able to stop fungal or bacterial infections in patients whose immune systems are compromised, such as those with cancer or AIDS, or patients undergoing immunosuppressive therapies for organ transplantation or for the treatment of diseases such as multiple sclerosis and psoriasis.

As a first step in reaching this goal of developing new drugs, Brookhaven biologist Maria Bewley will use the National Synchrotron Light Source (NSLS) at Brookhaven to determine the structures of three proteins that are found in the metabolic pathways, or sequence of reactions catalyzed by enzymes, that enable lysine to be synthesized by microbes. Lysine is one of eight essential amino acids that humans must consume because they cannot synthesize it.

Fungi and bacteria have pathways that can synthesize lysine. The enzymes in these pathways are ideal targets for developing anti-microbial drugs, since they are absent in humans.

"We can kill fungi and bacteria if we can develop a drug that can block the enzymes in their pathways before they synthesize lysine," Bewley explained. "Since these drugs would attack enzymes that don't exist in humans, it is unlikely that they would have negative effects in the human body."

Designing such drugs, however, is hampered by the lack of structural information about the three enzymes in the lysine pathways. To obtain structural information on them, Bewley will clone and express each of the enzymes using a patented gene expression system, known as T-7, invented by Brookhaven biologists. Then she will purify each enzyme, crystallize it, and expose it to x-rays at the NSLS. A detector records a pattern from the resulting scattered x-ray beam, which allows Bewley to determine the enzyme's structure.

During the first year of the CRADA, Battelle will identify business opportunities to market compounds that inhibit lysine enzymes. Battelle's Robert Miller explained, "The development of antibiotic resistance is a worldwide medical threat. The goal is to use our business strategy and technology innovation competencies to identify the path forward for delivery of anti-microbial compounds and technologies. Ultimately, the success of this program is based on the enzyme structural information collected by Dr. Bewley."

As part of this effort, Battelle plans to set up alliances with academic or industrial partners to begin to design candidate inhibitors of lysine enzymes. The goal is to use the structural information and the business plan to generate funding for the design, preparation, and testing of candidate inhibitors, which might lead to the commercialization of novel anti-microbial drugs.
Battelle is funding this CRADA.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more:

The U.S. Department of Energy's Brookhaven National Laboratory ( conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

DOE/Brookhaven National Laboratory

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to