Nav: Home

Two UCSB professors receive Early Career Research Awards

May 27, 2015

Two members of UC Santa Barbara's faculty have been named recipients of the U.S. Department of Energy's Early Career Research Program awards. Assistant professors Nathaniel Craig in the Department of Physics and Matthew Helgeson in the Department of Engineering are among 44 young scientists and engineers from across the nation selected to receive this year's awards.

"We are very pleased that UCSB is one of only two universities with two assistant professors receiving these prestigious early career awards," said Michael Witherell, vice-chancellor for research at UCSB. "We continue to attract some of the top scientists and engineers in the country, doing forefront research on a wide range of problems, from the Higgs boson to polymeric fluids."

Awardees were selected from a large pool of university- and national laboratory-based applicants. Selection was based on peer review by outside scientific experts. Under the program, university-based researchers will receive at least $150,000 per year to cover summer salary and research expenses.

Physics Beyond the Higgs Boson

"It's incredibly gratifying to receive this support from the Department of Energy, which will facilitate the research of graduate students and postdoctoral researchers studying physics beyond the Standard Model," said Craig, whose research investigates physics beyond the Higgs boson.

The discovery of the elusive Higgs boson in 2012 culminated a half-century of searching by thousands of scientists all over the world and marks the completion of the Standard Model of fundamental particle physics. But for Nathaniel Craig, a new search has just begun.

"What I've really been drawn to are the set of questions where there is interesting theory, but we also have the data, and we can conduct experiments and test our hypotheses in a progressive way," said Craig, who will be using the Higgs to dig deeper to uncover the framework of the universe.

If anything, discovery of the rare and peculiar boson has led to more questions: How could it be so light when quantum effects predict it to be much heavier? Is there more than one Higgs boson and could the particle's generation or decay provide clues to the existence of other as-yet unknown particles?

By leveraging current knowledge of the Higgs gained at the Large Hadron Collider at the European Organization for Nuclear Research, as well as data from upcoming collisions planned at the LHC it may be possible to answer those questions.

Because the Higgs interacts with particles it encounters, imbuing them with mass, according Craig, it can provide a very sensitive probe for searching for new physics -- particularly new fundamental particles that have yet to be found and placed into the framework of the Standard Model. These interactions may also point to some explanation of how the Higgs has resisted becoming the heavy particle that quantum effects predict.

"Quantum mechanical effects want to pull the mass of the Higgs up to be equal to the heaviest masses of the particles it talks to," said Craig. "So there's this mystery: Why is there such a huge difference?"

One answer might lie in an extension of the Standard Model called supersymmetry that introduces new particles that cancel the quantum effects that contribute to the Higgs mass. And, one can't discount the possibility that there may be several Higgs bosons, in the same way there are multiples of the other particles, noted Craig. Now that they know what to look for, it's a matter of having a systematic program for conducting the search.

"If we really just study the Higgs, that's really the most promising way to understand the underlying structure of the universe," he said.

Probing the Secrets of Complex Fluids

"I am honored to receive this generous award from the Department of Energy, and appreciate the long-term commitment to basic science that it reflects. I would also like to thank the support of neutron scattering programs at Oak Ridge National Laboratory and the National Institute of Standards and Technology that provide the facilities that make this research possible," said Matt Helgeson.

Complex fluids are at the heart of Helgeson's research. These are materials that exist between two phases and so respond to stress differently than do regular solids, liquids and gases. Common examples include quicksand and shaving gel; these types of fluids are also used in new and high tech processes such as 3D printing.

According to Helgeson, the award will help his group to better understand how complex fluids behave on the nanoscale.

"This award will enable us to develop neutron scattering methods that give unparalleled measurement of the structure and dynamics of complex fluids in situ under flow," he said. Previous methods of making these measurements take into account steady flows, he added, but real-life use of these complex fluids in industry typically involves different rates of flow and, thus, different behaviors. The group is developing a device that will allow researchers to emulate these complex flows and measure the fluids' properties and behaviors.

The research also goes toward understanding how these processing flows could be designed to control the formation of materials used in energy production and conversion, such as solar cells and other semiconductor devices.

"These studies may lead to new routes to refined structures that give rise to superior performance in these materials, or perhaps the discovery of entirely novel flow-induced structures with unique or enhanced properties," Helgeson said.

"This prestigious Department of Energy award recognizes Professor Helgeson's achievements and his tremendous potential," commented Rod Alferness, dean of UCSB's College of Engineering. "I convey the sentiments of the entire College of Engineering community when I say we look forward to the research and student mentoring that will result from this award."
-end-


University of California - Santa Barbara

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.