Spin glass physics with trapped ions

May 27, 2016

One of the most striking discoveries of quantum information theory is the existence of problems that can be solved in a more efficient way with quantum resources than with any known classical algorithm.

Number-partitioning, which refers to the simple task of dividing a set of numbers into two groups of equal sums is, in fact, a very difficult problem to solve with classical computers.

Often, such problems can be related to a physical model, which then allows for solving the problem by finding the minimum energy state of the model. Here, an important role is played by spin glass models, that is, models describing a collection of tiny magnets interacting with each other in a random fashion.

In the recent work published in Nature Communications, Dr. Tobias Grass, David Raventós, Dr. Christian Gogolin, led by ICREA Prof. at ICFO Dr. Maciej Lewenstein, in collaboration with Dr. Bruno Julià-Díaz from the University of Barcelona (UB), lay the theoretical foundations for a quantum simulation of spin glass physics with trapped ions.

The idea proposed by the team of researchers shows how to tackle the problem of number partitioning by applying a strategy known as "quantum annealing". This is done by initially applying a strong magnetic field which is then switched off slowly during the simulation. In this way, the quantum state is deformed until it matches with the desired solution. This can be faster than other methods to solve the problem.

The implementation of this approach is possible with state-of-the-art techniques for trapping, cooling, and manipulating ions. As Dr. Grass clearly states, "In the past, we have seen quantum simulations which solve a problem from quantum physics. In our approach, the same techniques are used to solve a problem from computer science. The results of our study opens a new path and brings us a step closer to the development of a quantum computer."
Reference: "Quantum annealing for the number-partitioning problem using a tunable spin glass of ions" Tobias Graß, David Raventós, Bruno Juliá-Díaz, Christian Gogolin & Maciej Lewenstein, http://www.nature.com/ncomms/2016/160527/ncomms11524/full/ncomms11524.html

ICFO-The Institute of Photonic Sciences

Related Quantum State Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

State gun laws may help curb violence across state lines: study
Columbia University Mailman School of Public Health researchers find that strong state firearm laws are associated with fewer firearm homicides--both within the state where the laws are enacted and across state lines.

Scientists find evidence of exotic state of matter in candidate material for quantum computers
Using a novel technique, scientists working at the Florida State University-headquartered National High Magnetic Field Laboratory have found evidence for a quantum spin liquid, a state of matter that is promising as a building block for the quantum computers of tomorrow.

Opioid prescriptions for knee surgery vary widely from state to state
New research from Texas A&M University and the University of Pennsylvania on opioid prescribing practices across the country after outpatient knee surgeries found that prescription strength and number of tablets is prescribed highest in Oklahoma and lowest in Vermont.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Quantum physicists crack mystery of 'strange metals,' a new state of matter
Strange metals are just plain odd. They are related to high-temperature superconductors and have surprising connections to the properties of black holes.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

The spin state story: Observation of the quantum spin liquid state in novel material
The quantum spin liquid (QSL) state is an exotic state of matter where the spin of electrons, which generally exhibits order at low temperatures, remains disordered.

Read More: Quantum State News and Quantum State Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.