Skin cancer: A team synthesizes new drugs with surprising powers

May 27, 2016

Finding new, more effective and personalised treatments for cancer is the challenge of many researchers. A challenge that has been successfully met by a team from Inserm led by Stéphane Rocchi (Inserm Unit 1065, "Mediterranean Center for Molecular Medicine"), which has just synthesised and developed new drugs for melanoma. One of them, known as HA15, reduces the viability of melanoma cells without being toxic for normal cells. This work has just been published in the journal Cancer Cell.

Melanoma is a highly aggressive form of skin cancer. It affects melanocytes, the cells responsible for the synthesis of melanin, which gives the skin its colour. There are 3 stages of tumour progression: radial growth, in which the cells proliferate in a disordered manner in the epidermis, the vertical growth phase, which involves invasion of the dermis, and finally the metastatic phase, corresponding to the dissemination of the cancer cells in the peripheral tissues.

Although encouraging results have been obtained for treating the metastatic phase (using targeted therapies or immunotherapies), most patients will need additional treatments to prevent the tumour from coming back, and to prevent more metastases from developing. The identification of new drug candidates is therefore an unavoidable element for the establishment of effective biotherapies against this cancer, the incidence of which is doubling every ten years.

In this context, researchers from Nice discovered a new family of drugs, the Thiazole Benzensulfonamides (TZB), which have useful anticancer properties. "Initially this family of drugs was identified in type 2 diabetes, as it increased the sensitivity of cells to insulin. If we wanted to use it against cancer, we had to be able to eliminate this proinsulin activity," explains Stéphane Rocchi. "Thus we started to modify its structure."

After many attempts, the initial TZD structure was extensively modified thanks to a fruitful collaboration with Dr Benhida's team from the Nice Institute of Chemistry, to obtain a formulation in which the "lead compound" was called HA15.

Compounds triggering endoplasmic reticulum stress exert anti-melanoma effects and overcome BRAF inhibitor resistance.

Michael Cerezo1,2#, Abdelali Lehraiki1,2#, Antoine Millet3#, Florian Rouaud1,2, Magali Plaisant1,2, Emilie Jaune1,2, Thomas Botton1,2, Cyril Ronco3, Patricia Abbe1,2, Hela Amdouni3, Thierry Passeron1,2,4,Veronique Hofman5,6,2, Baharia Mograbi5,2, Anne-Sophie Dabert-Gay7,2, Delphine Debayle7,2, Damien Alcor1,2, Nabil Rabhi8 , Jean-Sébastien Annicotte8 , Laurent Héliot9, Mariano Gonzalez-Pisfil9, Caroline Robert10, Solange Moréra11, Armelle Virougoux11, Philippe Gual12, Maruf MU Ali13, Corine Bertolotto1,2,4, Paul Hofman5,6,2, Robert Ballotti1,2,4, Rachid Benhida3*, and Stéphane Rocchi1,2,4*.

1 INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaire : de la pigmentation cutanée au mélanome, Nice, France;

2 Université de Nice Sophia Antipolis, UFR de Médecine, Nice, France;

3 Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France;

4 Service de Dermatologie, Hôpital Archet II, CHU Nice, France;

5 Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, Nice, F-06107, France;

6 Laboratoire de pathologie clinique et expérimentale et Hospital-related biobank (BB-0033-00025) , Hôpital Pasteur, Nice, France;

7 Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR 7275, Sophia Antipolis, France.;

8 Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France;

9 Equipe Biophotonique Cellulaire Fonctionnelle, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) GDR 2588, Villeneuve d'Ascq cedex , France

10 Department of Dermatology, Cancer Campus, Gustave Roussy Institute, Villejuif, France;

11 Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France;

12 INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 8, Nice, France;

13 Department of Life Sciences, Imperial College, London, United Kingdom.

Investigator contact

Stéphane Rocchi
Inserm Research Director
Inserm Unit 1065, "Mediterranean Center for Molecular Medicine" / c3m, Nice
Tel.: +33 (0)4 89 06 43 33

INSERM (Institut national de la santé et de la recherche médicale)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to