Nav: Home

Organism responsible for paralytic shellfish poisoning may affect fisheries

May 27, 2016

The toxic dinoflagellate, Alexandrium fundyense, is a photosynthetic plankton--a microscopic organism floating in the ocean, unable to swim against a current. New research by scientists at the University of Hawai'i at Manoa (UHM) School of Ocean and Earth Science and Technology (SOEST) suggests that ingestion of this dinoflagellate changes the energy balance and reproductive potential of a particular copepod--a small crustacean--in the North Atlantic, which is key food source for young fishes, including many commercially important species.

Though this dinoflagellate is responsible for paralytic shellfish poisoning, previous studies suggested that the copepod is highly tolerant of the dinoflagellate with no increase in mortality. However, with this new research, lead author, Vittoria Roncalli post-doctoral researcher at the UHM Pacific Biosciences Research Center (PBRC), and co-authors found the toxic dinoflagellate does indeed stress the copepod, Calanus finmarchicus, and impacts its energy balance. Thus, copepods feeding on the dinoflagellate have less energy available for life processes including growth, reproduction and creating essential fats (lipid biosynthesis).

In controlled laboratory experiments, the researchers fed different groups of copepods low doses or high doses of the toxic dinoflagellate and measured the physiological response using a novel molecular technique, known as RNA-Seq.

"In essence, we were able to identify the instructions that directed the copepod's response to its changing environment," said Roncalli. "By analyzing changes in the 'messenger RNA' profile we discovered which biological processes were affected."

To their surprise, they observed large-scale physiological responses in both the high and low dose diets. The copepod's energy balance was affected, even in the low dose treatment, and the effect on lipid biosynthesis was particularly unexpected.

Global climate change is affecting all environments on Earth, benefiting some organisms while hurting others. One trend is the increase in the frequency and magnitude of harmful algal blooms, such as blooms of the dinoflagellate Alexandrium fundyense, thus increasing the number and extent of fishery closures due to paralytic shellfish poisoning in the Gulf of Maine.

"Further, high-density harmful algal blooms could, at the population level, affect the number of copepods, thus affecting the food source which sustains important fisheries in the Atlantic," said Petra Lenz, researcher at PBRC and co-author of the study.

The researchers are currently working on a second study to assess the effect of the dinoflagellates on the early developmental stages of the copepod, C. finmarchicus. Furthermore, using this novel technique, they can now investigate how key zooplankton species respond physiologically to changes in temperature and food, and human influence on the ocean.
-end-


University of Hawaii at Manoa

Related Energy Articles:

Quantum vacuum: Less than zero energy
According to quantum physics, energy can be 'borrowed' -- at least for some time.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
More Energy News and Energy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...