Fast, stretchy circuits could yield new wave of wearable electronics

May 27, 2016

MADISON, Wis. -- The consumer marketplace is flooded with a lively assortment of smart wearable electronics that do everything from monitor vital signs, fitness or sun exposure to play music, charge other electronics or even purify the air around you -- all wirelessly.

Now, a team of University of Wisconsin-Madison engineers has created the world's fastest stretchable, wearable integrated circuits, an advance that could drive the Internet of Things and a much more connected, high-speed wireless world.

Led by Zhenqiang "Jack" Ma, the Lynn H. Matthias Professor in Engineering and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison, the researchers published details of these powerful, highly efficient integrated circuits today, May 27, 2016, in the journal Advanced Functional Materials.

The advance is a platform for manufacturers seeking to expand the capabilities and applications of wearable electronics -- including those with biomedical applications -- particularly as they strive to develop devices that take advantage of a new generation of wireless broadband technologies referred to as 5G.

With wavelength sizes between a millimeter and a meter, microwave radio frequencies are electromagnetic waves that use frequencies in the .3 gigahertz to 300 gigahertz range. That falls directly in the 5G range.

In mobile communications, the wide microwave radio frequencies of 5G networks will accommodate a growing number of cellphone users and notable increases in data speeds and coverage areas.

In an intensive care unit, epidermal electronic systems (electronics that adhere to the skin like temporary tattoos) could allow health care staff to monitor patients remotely and wirelessly, increasing patient comfort by decreasing the customary tangle of cables and wires.

What makes the new, stretchable integrated circuits so powerful is their unique structure, inspired by twisted-pair telephone cables. They contain, essentially, two ultra-tiny intertwining power transmission lines in repeating S-curves.

This serpentine shape -- formed in two layers with segmented metal blocks, like a 3-D puzzle -- gives the transmission lines the ability to stretch without affecting their performance. It also helps shield the lines from outside interference and, at the same time, confine the electromagnetic waves flowing through them, almost completely eliminating current loss. Currently, the researchers' stretchable integrated circuits can operate at radio frequency levels up to 40 gigahertz.

And, unlike other stretchable transmission lines, whose widths can approach 640 micrometers (or .64 millimeters), the researchers' new stretchable integrated circuits are just 25 micrometers (or .025 millimeters) thick. That's tiny enough to be highly effective in epidermal electronic systems, among many other applications.

Ma's group has been developing what are known as transistor active devices for the past decade. This latest advance marries the researchers' expertise in both high-frequency and flexible electronics.

"We've found a way to integrate high-frequency active transistors into a useful circuit that can be wireless," says Ma, whose work was supported by the Air Force Office of Scientific Research. "This is a platform. This opens the door to lots of new capabilities."
-end-
Other authors on the paper include Yei Hwan Jung, Juhwan Lee, Namki Cho, Sang June Cho, Huilong Zhang, Subin Lee, Tong June Kim and Shaoqin Gong of UW-Madison and Yijie Qiu of the University of Electronic Science and Technology of China.

--Renee Meiller, meiller@engr.wisc.edu, 608-262-2481

DOWNLOAD PHOTO: https://uwmadison.box.com/v/stretchy-circuit

University of Wisconsin-Madison

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.