Nav: Home

Study uncovers surprising melting patterns beneath Antarctica's Ross Ice Shelf

May 27, 2019

The ROSETTA-Ice project, a three-year, multi-institutional data collection survey of Antarctic ice, has assembled an unprecedented view of the Ross Ice Shelf, its structure and how it has been changing over time. In a study published today in Nature Geoscience, the ROSETTA-Ice team members detail how they discovered an ancient geologic structure that restricts where ocean water flows. The discovery suggests that local ocean currents may play a critical role in the ice shelf's future retreat.

Ice shelves are massive expanses of floating ice that slow down the flow of Antarctic ice into the ocean. ROSETTA-Ice collected data from the massive Ross Ice Shelf, which helps slow the flow of about 20 percent of Antarctica's grounded ice into the ocean -- equivalent to 38 feet of global sea level rise. Antarctica's ice is already melting at an accelerating rate. Predicting how the ice shelf will change as the planet continues to warm requires understanding the complex ways in which the ice, ocean, atmosphere and geology interact with each other.

To gain a better understanding of these processes, the multidisciplinary ROSETTA-Ice team approached the Ross Ice Shelf much like explorers visiting a new planet for the first time. The team faced the key challenge of how to gather data from a region the size of Spain, and where ice that is frequently more than a thousand feet thick prevents more traditional ship-based surveys of the seabed. The solution was IcePod, a first-of-its kind system designed to collect high-resolution data across the polar regions. IcePod was developed at Columbia University's Lamont-Doherty Earth Observatory and mounted on a cargo plane. Its instruments measure ice shelf height, thickness and internal structure, and the magnetic and gravity signal of the underlying rock.

Each time the team flew across the ice shelf, the IcePod's magnetometer (which measures Earth's magnetic field) showed a flat and almost unchanging signal. That is, until halfway across the ice shelf, when the instrument came alive, displaying large variations, much like the heartbeat on a cardiogram. When the team mapped their results, it became clear that this "heartbeat" always appeared in the middle of the ice shelf, identifying a previously unmapped segment of the geologic boundary between East and West Antarctica.

The team then used IcePod's measurements of Earth's gravity field to model the shape of the sea floor beneath the ice shelf. "We could see that the geological boundary was making the seafloor on the East Antarctic side much deeper than the West, and that affects the way the ocean water circulates under the ice shelf," explained Kirsty Tinto, the Lamont research scientist who led all three field expeditions and is lead author of the study.

Using the new map of the seabed under the ice shelf, the team ran a model of ocean circulation and its effect on ice shelf melting. Compared with the Amundsen Sea to the east, where warm water crosses the continental shelf to cause rapid melting of the ice shelves, little warm water reaches the Ross Ice Shelf. In the Ross Sea heat from the deep ocean is removed by the cold winter atmosphere in a region of open water, called the Ross Shelf Polynya, before flowing under the ice shelf. The model showed that this cold water melts deeper portions of east Antarctic glaciers, but it is steered away from the west Antarctic side by the depth change at the ancient tectonic boundary.

In a surprise twist, however, the team found that the polynya also contributes to a region of intense summertime melting along the ice shelf's leading edge. This melting was confirmed in the radar images of the ice shelf's internal structure. "We found that the ice loss from the Ross Ice Shelf and flow of the adjoining grounded ice are sensitive to changes in processes along the ice front, such as increased summer warming if sea ice or clouds decrease," said Laurie Padman, a co-author and senior scientist at Earth and Space Research.

Overall, the results indicate that models used to predict Antarctic ice loss in future climates must consider changing local conditions near the ice front, not just the large-scale changes in the circulation of warm deep water. "We found out that it's these local processes we need to understand to make sound predictions," said Tinto.
-end-
Contact: Kirsty Tinto tinto@ldeo.columbia.edu

The ROSETTA-Ice project partners include Lamont-Doherty Earth Observatory of Columbia University, Scripps Institution of Oceanography at the University of California San Diego, Colorado College, Earth and Space Research and GNS Science, New Zealand. Fieldwork was supported by the United States Antarctic Program and the New York Air National Guard, the New Zealand Ministry of Business Innovation and Employment and the New Zealand Antarctic Research Institute. ROSETTA-Ice is funded by the National Science Foundation, The Moore Foundation, and the Old York Foundation.

Earth Institute at Columbia University

Related Ice Shelf Articles:

Antarctic ice rift close to calving, after growing 17km in 6 days -- latest data from ice shelf
The rift in the Larsen C ice shelf in Antarctica has grown by 17km in the last few days and is now only 13km from the ice front, indicating that calving of an iceberg is probably very close, Swansea University researchers revealed after studying satellite data.
Off-the-shelf, power-generating clothes are almost here
A lightweight, comfortable jacket that can generate the power to light up a jogger at night may sound futuristic, but materials scientist Trisha Andrew at UMass Amherst could make one today.
Irreversible ocean warming threatens the Filchner-Ronne Ice Shelf
By the second half of this century, rising air temperatures above the Weddell Sea could set off a self-amplifying meltwater feedback cycle under the Filchner-Ronne Ice Shelf, ultimately causing the second-largest ice shelf in the Antarctic to shrink dramatically.
Shelf sediments reveal climate shifts through the eons
Climate change around Antarctica can severely affect Australia's rainfall and even influence the distribution of wet and dry zones across southeast Asia, an international study has revealed.
West Antarctic ice shelf breaking up from the inside out
A key glacier in Antarctica is breaking apart from the inside out, suggesting that the ocean is weakening ice on the edges of the continent.
Ice shelf vibrations cause unusual waves in Antarctic atmosphere
Ice shelf vibrations cause unusual waves in Antarctic atmosphere.
Tracking the amount of sea ice from the Greenland ice sheet
The Greenland ice sheet records information about Arctic climate going back more than 120.000 years.
Improved knowledge of shelf life of food
We should avoid food waste but, on the other hand, not risk food poisoning from eating food that is way past its sell-by date.
Changes in Antarctic sea ice production due to surrounding ice conditions.
Antarctic sea ice production spanning more than 20 years has been understood through the analysis of satellite observations using specially developed techniques.
Colossal Antarctic ice-shelf collapse followed last ice age
A new PNAS study is providing clues about how Antarctica's nation-sized Ross Ice Shelf might respond to a warming climate.

Related Ice Shelf Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...