Nav: Home

Major step forward in the production of 'green' hydrogen

May 27, 2019

The first thermodynamically-reversible chemical reactor capable of producing hydrogen as a pure product stream represents a "transformational" step forward in the chemical industry, the authors of a new study claim.

The novel reactor, described today in the prestigious academic journal Nature Chemistry, avoids mixing reactant gases by transferring oxygen between reactant streams via a solid state oxygen reservoir.

This reservoir is designed to remain close to equilibrium with the reacting gas streams as they follow their reaction trajectory and thus retains a 'chemical memory' of the conditions to which it has been exposed.

The result is that hydrogen is produced as a pure product stream, removing the need for costly separation of the final products.

Led by Newcastle University, UK, the research involved experts from the universities of Durham and Edinburgh and the European Synchrotron Radiation Facility in France, and was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Professor Ian Metcalfe, lead author and Professor of Chemical Engineering at Newcastle University said:

"Chemical changes are usually performed via mixed reactions whereby multiple reactants are mixed together and heated. But this leads to losses, incomplete conversion of reactants and a final mixture of products that need to be separated.

"With our Hydrogen Memory Reactor we can produce pure, separated products. You could call it the perfect reactor."

Most abundant element in the universe

Hydrogen is the most abundant element in the universe. Produced through the splitting of water molecules, the shift towards renewable energy has led to a rise in so-called 'green hydrogen'.

Hydrogen is a clean and useful energy store and can be used as a fuel, to generate electricity and can be stored and transported via the gas networks.

All processes - be they chemical, mechanical or electrical - are thermodynamically irreversible, and are less efficient that they otherwise could be.

This means that in traditional chemical reactors when hydrogen is produced it needs to be separated from other products, a process which is both costly and often energy intensive.

Describing their new system, the team demonstrate a chemical reactor capable for the first time of approaching thermodynamically-reversible operation.

Reacting water and carbon monoxide to generate hydrogen and carbon dioxide, the system also prevents carbon being carried into the hydrogen produce stream as carbon monoxide or carbon dioxide, thus avoiding contamination of the product.

'Flipping' the reservoir a bit like a switch, the team showed it is possible to reach high conversion in the system so that carbon dioxide and hydrogen are produced at either end of the reactor as pure products.

"Whereas conventional hydrogen production requires two reactors and a separation, our reactor accomplishes all the steps in one unit," adds Professor Metcalfe.

"And while we demonstrate the concept with hydrogen, the memory reactor concept may also be applied to other processes."
-end-


Newcastle University

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...