Nav: Home

De-TOXing exhausted T cells may bolster CAR T immunotherapy against solid tumors

May 27, 2019

LA JOLLA, CA--A decade ago researchers announced development of a cancer immunotherapy called CAR (for chimeric antigen receptor)-T, in which a patient is re-infused with their own genetically modified T cells equipped to mount a potent anti-tumor attack. Since then CAR T approaches (one of several strategies collectively known as "adoptive T cell transfer") have made headlines as a novel cellular immunotherapy tool, most successfully against so-called "liquid cancers" like leukemias and lymphomas.

Sarcomas and carcinomas have proven more resistant to these approaches, in part because engineered T-cells progressively lose tumor-fighting capacity once they infiltrate a tumor. Immunologists call this cellular fatigue T cell "exhaustion" or "dysfunction."

In efforts to understand why, La Jolla Institute for Immunology (LJI) investigators Anjana Rao, Ph.D., and Patrick Hogan, Ph.D., have published a series of papers over the last years reporting that a transcription factor that regulates gene expression, called NFAT, switches on "downstream" genes that weaken T cell responses to tumors and thus perpetrates T cell exhaustion. One set of these downstream genes encodes transcription factors known as NR4A, and a previous graduate student, Joyce Chen, showed that genetic elimination of NR4A proteins in tumor-infiltrating CAR T cells improved tumor rejection. However, the identity of additional players cooperating with NFAT and NR4A in that pathway has remained unknown.

Now a paper published in this week's online edition of the Proceedings of the National Academy of Sciences (PNAS) from the Rao and Hogan labs provides a more complete list of participants in an extensive gene expression network that establishes and maintains T cell exhaustion. The study employs a mouse model to show that genetically eliminating two new factors, TOX and TOX2, also improves eradication of "solid" melanoma tumors in the CAR T model. This work suggests that comparable interventions to target NR4A and TOX factors in patients may extend the use of CAR T-based immunotherapy to solid tumors.

The group began by comparing gene expression profiles in samples of normal versus "exhausted" T cells, searching for factors upregulated in parallel with NR4A as co-conspirators in T cell dysfunction. "We found that two DNA binding proteins called TOX and TOX2 were consistently highly expressed along with NR4A transcription factors," says Hyungseok Seo, Ph.D., a postdoctoral fellow in the Rao lab and the study's first author. "This discovery suggested that factors like NFAT or NR4A may control expression of TOX."

The group then recapitulated a CAR T protocol in mice by first inoculating animals with melanoma tumor cells to establish a tumor, and then a week later infusing mice with one of two collections of T cells: a "control" sample from a normal mouse, versus a sample derived from mouse genetically engineered to lack TOX and TOX2 expression in T cells.

Remarkably, mice infused with TOX-deficient CAR T cells showed more robust regression of melanoma tumors than did mice infused with normal cells. Moreover, mice treated with TOX-deficient CAR T cells exhibited dramatically increased survival, suggesting that loss of TOX factors combats T cell exhaustion and allows T cells to destroy tumor cells more effectively.

Additional analysis led the investigators down a pathway ending with a well-known immune adversary. The researchers showed that TOX factors join forces with both NFAT and NR4A to promote expression of an inhibitory receptor called PD-1, which decorates the surface of exhausted T cells and sends immunosuppressive signals.

PD-1 is blocked by numerous monoclonal antibodies called checkpoint inhibitors, which combat immunosuppression and activate an innate anti-cancer immune response. Convergence of TOX, NFAT, and NR4A on PD-1 makes molecular and immunological sense and puts it at the convergence of both cellular and antibody immunotherapy approaches.

"Currently, CAR T cell therapy shows amazing effects in patients with "liquid tumors" such as leukemia and lymphoma," says Seo. "But they still do not work well in patients with solid tumors due to T cell exhaustion. If we could inhibit TOX or NR4A by treating CAR T cells with a small molecule, this strategy might show a strong therapeutic effect against solid cancers such as melanomas."
-end-
The study was funded by NIH grants AI109842, AI040127, AI108651 and AI140095, GM007752, S10OD016262 and S10 RR027366. Other support came from an AACR-Genentech Immuno-oncology Research, a Donald J. Gogel Cancer Research Irvington Fellowship, a PhRMA Foundation Paul Calabresi Medical Student Research Fellowship and graduate student fellowships from CONACYT/UCMEXUS.

Full citation: Hyungseok Seo, Joyce Chena, Edahí Gonzàlez Avalosa, Daniela Samaniego Castruitaa, Arundhoti Dasg, Yueqiang H. Wang, Isaac F. López Moyadoa, Romain Georgesa, Wade Zhanga, Atsushi Onoderaa, Cheng-Jang Wuk, Li-Fan Luk, Patrick G. Hogan, Avinash Bhandoola and Anjana Rao. TOX and TOX2 cooperate with NR4A transcription factors to impose CD8+T cell exhaustion. PNAS, 2019. doi.: 10.1073/pnas.201905675

About La Jolla Institute

The La Jolla Institute for Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading toward its goal: life without disease.

La Jolla Institute for Immunology

Related Tumors Articles:

Mammograms: Are we overdiagnosing small tumors?
An analysis of breast cancer data revealed that many small breast cancers have an excellent prognosis because they are inherently slow growing, according to Yale Cancer Center experts.
The complete epigenomes of the most frequent tumors, unveiled
An IDIBELL research team manages to characterize the complete epigenomes of the most frequent tumors, including those of colon, lung and breast cancer.
Attacking metastatic tumors in the brain
Rakesh Jain, Ph.D., Director of the Edwin L. Steele Laboratory for Tumor Biology at the Massachusetts General Hospital and supported by the National Foundation for Cancer Research, has discovered a novel mechanism behind the resistance to HER2- or PI3K-targeted therapies, and a treatment strategy that may overcome treatment resistance.
New technology can detect tiny ovarian tumors
MIT engineers have developed a highly sensitive way to reveal ovarian tumors: In tests in mice, they were able to detect tumors smaller than 2 millimeters in diameter.
Beyond genomics: Using proteomics to target tumors
Dr. Amanda Paulovich, whose lab has a leading role in the Beau Biden Cancer Moonshot, will speak April 5 at the AACR annual meeting about her lab's pioneering methods to measure proteins that serve as tumor markers.
How best to treat infections and tumors
A new research analysis provides physicians and patients with new information to help them make difficult decisions about how to treat tumors and infections.
New pharmacon allows testicular tumors to shrink
A new active pharmaceutical ingredient may help against severe forms of testicular cancer, which only respond inadequately to other therapies.
Why tumors evade immunotherapy
Immunotherapy is a new and highly promising form of treatment for cancer, but in many patients, tumors recur.
Novel antibody against brain tumors
Scientists of Helmholtz Zentrum M√ľnchen and the Munich University Hospital (LMU) are developing a novel antibody to treat brain tumors.
A better way to diagnose and manage neuroendocrine tumors
A recent study reported in the May issue of the Journal of Nuclear Medicine demonstrates that Ga-68 DOTATATE PET/CT scans are superior to In-111 pentetreotide scans, the current imaging standard in the United States for detecting neuroendocrine tumors, and could significantly impact treatment management.

Related Tumors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...