Nav: Home

Direct methane conversion under mild conditions by thermo-, electro- or photocatalysis reviewed

May 27, 2019

Direct conversion of Earth-abundant methane into value-added chemicals under mild conditions is an attractive technology in response to the increasing industrial demand for feedstocks and the worldwide appeal of energy conservation. Exploring advanced low-temperature C-H activation catalysts and reaction systems is the key to converting methane in a direct and mild manner.

Recently, a research group led by Prof. DENG Dehui from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences reviewed the latest progress in low-temperature methane conversion in thermocatalytic, electrocatalytic, and photocatalytic systems. The study was published in Chem.

"We summarized the typical catalysts employed in various reaction systems, especially the heterogeneous catalysts with noteworthy C-H activation performance," said Prof. DENG.

"The viewpoints on the catalyst design, theoretical simulations, choice of reaction conditions, and method of reaction product analysis were introduced to encourage more viable technology for low-temperature methane conversion in the future," said Prof. DENG.

The researchers also pointed out the importance of coupling multiple driving forces from thermal, electrical and solar energy to jointly activate methane by integrating the advantages of these activation pathways in one reaction system.

Prof. DENG's group has been focusing on the development of 2D material-based catalysts and their applications in the catalytic conversion of energy-related molecules (Nature Nanotechnology, 2016, 11, 218-230; Chemical Reviews, 2019, 119, 1806-1854).

As early as 2015, Prof. DENG and Prof. BAO Xinghe, et al. reported the capability of graphene-confined single iron sites for the catalytic oxidation of complicated hydrocarbons at room temperature (Science Advances, 2015, 1, e1500462).

Notable recent progress by the group includes the finding that graphene-confined single iron atoms could even catalyze methane conversion at room temperature (Chem, 2018, 4, 1902-1910).

These results demonstrate bright prospects for 2D-based catalysts in the application of C-H activation and other useful catalytic processes.
-end-


Chinese Academy of Sciences Headquarters

Related Chemical Physics Articles:

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Chemical Physics News and Chemical Physics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...